UZH-Logo

Maintenance Infos

DNA polymerase beta can incorporate ribonucleotides during DNA synthesis of undamaged and CPD-damaged DNA.


Bergoglio, V; Ferrari, E; Hübscher, U; Cazaux, C; Hoffmann, J S (2003). DNA polymerase beta can incorporate ribonucleotides during DNA synthesis of undamaged and CPD-damaged DNA. Journal of Molecular Biology, 331(5):1017-1023.

Abstract

Overexpression of the error-prone DNA polymerase beta (Pol beta) has been found to increase spontaneous mutagenesis by competing with the replicative polymerases during DNA replication. Here, we investigate an additional mechanism potentially used by Pol beta to enhance genetic instability via its ability to incorporate ribonucleotides into DNA. By using an in vitro primer extension assay, we show that purified human and calf thymus Pol beta can synthesize up to 8-mer long RNA. Moreover, Pol beta can efficiently incorporate rCTP opposite G in the absence of dCTP and, to a lesser extent, rATP opposite T in the absence of dATP and rGTP opposite C in the absence of dGTP. Recently, Pol beta was shown to catalyze in vitro translesion replication of a thymine cyclobutane pyrimidine dimer (CPD). Here, we investigate if ribonucleotides could be incorporated opposite the CPD damage and modulate the efficiency of the bypass process. We find that all four rNTPs can be incorporated opposite the CPD lesion, and that this process affects translesion synthesis. We discuss how incorporation of ribonucleotides into DNA may contribute to the high frequency of mutagenesis observed in Pol beta up-regulating cells.

Overexpression of the error-prone DNA polymerase beta (Pol beta) has been found to increase spontaneous mutagenesis by competing with the replicative polymerases during DNA replication. Here, we investigate an additional mechanism potentially used by Pol beta to enhance genetic instability via its ability to incorporate ribonucleotides into DNA. By using an in vitro primer extension assay, we show that purified human and calf thymus Pol beta can synthesize up to 8-mer long RNA. Moreover, Pol beta can efficiently incorporate rCTP opposite G in the absence of dCTP and, to a lesser extent, rATP opposite T in the absence of dATP and rGTP opposite C in the absence of dGTP. Recently, Pol beta was shown to catalyze in vitro translesion replication of a thymine cyclobutane pyrimidine dimer (CPD). Here, we investigate if ribonucleotides could be incorporated opposite the CPD damage and modulate the efficiency of the bypass process. We find that all four rNTPs can be incorporated opposite the CPD lesion, and that this process affects translesion synthesis. We discuss how incorporation of ribonucleotides into DNA may contribute to the high frequency of mutagenesis observed in Pol beta up-regulating cells.

Citations

19 citations in Web of Science®
22 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Biochemistry and Molecular Biology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:29 August 2003
Deposited On:11 Feb 2008 12:18
Last Modified:05 Apr 2016 12:15
Publisher:Elsevier
ISSN:0022-2836
Publisher DOI:10.1016/S0022-2836(03)00837-4
PubMed ID:12927538

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations