UZH-Logo

Maintenance Infos

Towards spatial assessment of carbon sequestration in peatlands: spectroscopy based estimation of fractional cover of three plant functional types


Schaepman-Strub, Gabriela; Limpens, J; Menken, M; Bartholomeus, H M; Schaepman, Michael E (2008). Towards spatial assessment of carbon sequestration in peatlands: spectroscopy based estimation of fractional cover of three plant functional types. Biogeosciences Discussions, 5:1293-1317.

Abstract

Peatlands accumulated large carbon stocks as peat in historical times. Currently however, many peatlands are on the verge of becoming sources with their carbon sequestration function becoming sensitive to environmental changes such as increases in temperature, decreasing water table and enhanced nitrogen deposition. Long term changes in vegetation composition are both, a consequence and indicator of future changes in carbon sequestration. Spatial continuous accurate assessment of the vegetation composition is a current challenge in keeping a close watch on peatland vegetation changes. In this study we quantified the fractional cover of three major plant functional types (Sphagnum mosses, graminoids, and shrubs) in peatlands, using field spectroscopy reflectance measurements (400–2400 nm) on 25 plots differing in plant functional type cover. The data was validated using point intercept methodology on the same plots. Our results showed that the detection of open Sphagnum versus Sphagnum covered by vascular plants (shrubs and graminoids) is feasible with an R² of 0.81. On the other hand, the partitioning of the vascular plant fraction into shrubs and graminoids revealed lower correlations of R² of 0.54 and 0.57, respectively. This study was based on a dataset where the reflectance of all main plant functional types and their pure components within the peatland was measured at local spatial scales. Spectrally measured species or plant community abundances can further be used to bridge scaling gaps up to canopy scale, ultimately allowing upscaling of the C balance of peatlands to the ecosystem level.

Abstract

Peatlands accumulated large carbon stocks as peat in historical times. Currently however, many peatlands are on the verge of becoming sources with their carbon sequestration function becoming sensitive to environmental changes such as increases in temperature, decreasing water table and enhanced nitrogen deposition. Long term changes in vegetation composition are both, a consequence and indicator of future changes in carbon sequestration. Spatial continuous accurate assessment of the vegetation composition is a current challenge in keeping a close watch on peatland vegetation changes. In this study we quantified the fractional cover of three major plant functional types (Sphagnum mosses, graminoids, and shrubs) in peatlands, using field spectroscopy reflectance measurements (400–2400 nm) on 25 plots differing in plant functional type cover. The data was validated using point intercept methodology on the same plots. Our results showed that the detection of open Sphagnum versus Sphagnum covered by vascular plants (shrubs and graminoids) is feasible with an R² of 0.81. On the other hand, the partitioning of the vascular plant fraction into shrubs and graminoids revealed lower correlations of R² of 0.54 and 0.57, respectively. This study was based on a dataset where the reflectance of all main plant functional types and their pure components within the peatland was measured at local spatial scales. Spectrally measured species or plant community abundances can further be used to bridge scaling gaps up to canopy scale, ultimately allowing upscaling of the C balance of peatlands to the ecosystem level.

Altmetrics

Downloads

30 downloads since deposited on 20 Mar 2013
16 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2008
Deposited On:20 Mar 2013 16:32
Last Modified:21 Nov 2016 14:01
Publisher:Copernicus Publications
ISSN:1810-6285
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.5194/bgd-5-1293-2008, 2008

Download

[img]
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 830kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations