UZH-Logo

Maintenance Infos

Inhibition of phosphoinositide-3 kinase pathway down regulates ABCG2 function and sensitizes malignant pleural mesothelioma to chemotherapy


Fischer, B; Frei, C; Moura, U; Stahel, R; Felley-Bosco, E (2012). Inhibition of phosphoinositide-3 kinase pathway down regulates ABCG2 function and sensitizes malignant pleural mesothelioma to chemotherapy. Lung Cancer, 78(1):23-29.

Abstract

Malignant pleural mesothelioma (MPM) is a relatively chemoresistant malignancy. Diverse biological targets are under investigation to develop new therapeutic options. One of these targets, namely the phosphoinositide-3-kinase (PI3K) pathway, has been shown to be a regulator of the side population (SP) phenotype in different cancers. The SP phenotype is due to drug efflux abilities providing drug-resistant properties. The presence of a SP fraction in MPM was recently observed in our laboratory. The aim of this study was to investigate the role of the PI3K pathway in the regulation of the SP phenotype in MPM. Treatment of overnight serum-starved cells with IGF increased phosphorylation of downstream target AKT, S6 and 4EBP1 and SP fraction in ZL55, ZL34 and SDM103T2 MPM cell lines. The PI3K/mTOR inhibitor NVP-BEZ235 and PI3K inhibitor wortmannin reduced the phosphorylation of downstream target AKT, S6 and 4EBP1 and decreased the SP fraction. Chemotherapy resistance mediated by drug efflux was tested by treating the cells with mitoxantrone. NVP-BEZ235 increased mitoxantrone cytotoxicity and this effect was mimicked by fumitremorgin C, a specific ABCG2 inhibitor, although not to the same extent, indicating that ABCG2-mediated drug efflux participates to chemoresistance. The involvement of ABCG2 in drug efflux was confirmed by determination of ABCG2-mediated decrease of intracellular mitoxantrone accumulation and silencing experiments. NVP-BEZ235-mediated decrease in drug efflux was associated with a significant decrease of ABCG2 present at the cell surface in ZL55 and SDM103T2 cells. In conclusion, the PI3K pathway is playing an important role in regulating the SP phenotype in MPM cells and inhibition of this activity may contribute to a more efficient cancer treatment.

Abstract

Malignant pleural mesothelioma (MPM) is a relatively chemoresistant malignancy. Diverse biological targets are under investigation to develop new therapeutic options. One of these targets, namely the phosphoinositide-3-kinase (PI3K) pathway, has been shown to be a regulator of the side population (SP) phenotype in different cancers. The SP phenotype is due to drug efflux abilities providing drug-resistant properties. The presence of a SP fraction in MPM was recently observed in our laboratory. The aim of this study was to investigate the role of the PI3K pathway in the regulation of the SP phenotype in MPM. Treatment of overnight serum-starved cells with IGF increased phosphorylation of downstream target AKT, S6 and 4EBP1 and SP fraction in ZL55, ZL34 and SDM103T2 MPM cell lines. The PI3K/mTOR inhibitor NVP-BEZ235 and PI3K inhibitor wortmannin reduced the phosphorylation of downstream target AKT, S6 and 4EBP1 and decreased the SP fraction. Chemotherapy resistance mediated by drug efflux was tested by treating the cells with mitoxantrone. NVP-BEZ235 increased mitoxantrone cytotoxicity and this effect was mimicked by fumitremorgin C, a specific ABCG2 inhibitor, although not to the same extent, indicating that ABCG2-mediated drug efflux participates to chemoresistance. The involvement of ABCG2 in drug efflux was confirmed by determination of ABCG2-mediated decrease of intracellular mitoxantrone accumulation and silencing experiments. NVP-BEZ235-mediated decrease in drug efflux was associated with a significant decrease of ABCG2 present at the cell surface in ZL55 and SDM103T2 cells. In conclusion, the PI3K pathway is playing an important role in regulating the SP phenotype in MPM cells and inhibition of this activity may contribute to a more efficient cancer treatment.

Citations

11 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Other titles:
Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Radiation Oncology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Oncology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:October 2012
Deposited On:20 Mar 2013 09:48
Last Modified:05 Apr 2016 16:42
Publisher:Elsevier
ISSN:0169-5002
Publisher DOI:https://doi.org/10.1016/j.lungcan.2012.07.005
PubMed ID:22857894

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations