Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Henneke, G; Gueguen, Y; Flament, D; Azam, P; Querellou, J; Dietrich, J; Hübscher, U; Raffin, J P (2002). Replication factor C from the hyperthermophilic archaeon Pyrococcus abyssi does not need ATP hydrolysis for clamp-loading and contains a functionally conserved RFC PCNA-binding domain. Journal of Molecular Biology, 323(5):795-810.

Full text not available from this repository.

Abstract

The molecular organization of the replication complex in archaea is similar to that in eukaryotes. Only two proteins homologous to subunits of eukaryotic replication factor C (RFC) have been detected in Pyrococcus abyssi (Pab). The genes encoding these two proteins are arranged in tandem. We cloned these two genes and co-expressed the corresponding recombinant proteins in Escherichia coli. Two inteins present in the gene encoding the small subunit (PabRFC-small) were removed during cloning. The recombinant protein complex was purified by anion-exchange and hydroxyapatite chromatography. Also, the PabRFC-small subunit could be purified, while the large subunit (PabRFC-large) alone was completely insoluble. The highly purified PabRFC complex possessed an ATPase activity, which was not enhanced by DNA. The Pab proliferating cell nuclear antigen (PCNA) activated the PabRFC complex in a DNA-dependent manner, but the PabRFC-small ATPase activity was neither DNA-dependent nor PCNA-dependent. The PabRFC complex was able to stimulate PabPCNA-dependent DNA synthesis by the Pabfamily D heterodimeric DNA polymerase. Finally, (i) the PabRFC-large fraction cross-reacted with anti-human-RFC PCNA-binding domain antibody, corroborating the conservation of the protein sequence, (ii) the human PCNA stimulated the PabRFC complex ATPase activity in a DNA-dependent way and (iii) the PabRFC complex could load human PCNA onto primed single-stranded circular DNA, suggesting that the PCNA-binding domain of RFC has been functionally conserved during evolution. In addition, ATP hydrolysis was not required either for DNA polymerase stimulation or PCNA-loading in vitro.

Item Type:Journal Article, refereed
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Biochemistry and Molecular Biology
DDC:570 Life sciences; biology
Language:English
Date:8 November 2002
Deposited On:11 Feb 2008 12:18
Last Modified:27 Nov 2013 22:42
Publisher:Elsevier
ISSN:0022-2836
Publisher DOI:10.1016/S0022-2836(02)01028-8
PubMed ID:12417194
Citations:Web of Science®. Times Cited: 20
Google Scholar™
Scopus®. Citation Count: 19

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page