UZH-Logo

Human replication protein A can suppress the intrinsic in vitro mutator phenotype of human DNA polymerase lambda.


Maga, G; Shevelev, I V; Villani, G; Spadari, S; Hübscher, U (2006). Human replication protein A can suppress the intrinsic in vitro mutator phenotype of human DNA polymerase lambda. Nucleic Acids Research, 34(5):1405-1415.

Abstract

DNA polymerase lambda (pol lambda) is a member of the X family DNA polymerases and is endowed with multiple enzymatic activities. In this work we investigated the in vitro miscoding properties of full-length, human pol lambda either in the absence or in the presence of the human auxiliary proteins proliferating cell nuclear antigen (PCNA) and replication protein A (RP-A). Our data suggested that (i) pol lambda had an intrinsic ability to create mismatches and to incorporate ribonucleotides at nearly physiological Mn++ and Mg++ concentrations; (ii) the sequence of the template-primer could influence the misincorporation frequency of pol lambda; (iii) pol lambda preferentially generated G:T and G:G mismatches; (iv) RP-A, but not PCNA, selectively prevented misincorporation of an incorrect nucleotide by pol lambda, without affecting correct incorporation and (v) this inhibitory effect required a precise ratio between the concentrations of pol lambda and RP-A. Possible physiological implications of these findings for the in vivo fidelity of pol lambda are discussed.

DNA polymerase lambda (pol lambda) is a member of the X family DNA polymerases and is endowed with multiple enzymatic activities. In this work we investigated the in vitro miscoding properties of full-length, human pol lambda either in the absence or in the presence of the human auxiliary proteins proliferating cell nuclear antigen (PCNA) and replication protein A (RP-A). Our data suggested that (i) pol lambda had an intrinsic ability to create mismatches and to incorporate ribonucleotides at nearly physiological Mn++ and Mg++ concentrations; (ii) the sequence of the template-primer could influence the misincorporation frequency of pol lambda; (iii) pol lambda preferentially generated G:T and G:G mismatches; (iv) RP-A, but not PCNA, selectively prevented misincorporation of an incorrect nucleotide by pol lambda, without affecting correct incorporation and (v) this inhibitory effect required a precise ratio between the concentrations of pol lambda and RP-A. Possible physiological implications of these findings for the in vivo fidelity of pol lambda are discussed.

Citations

22 citations in Web of Science®
23 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

96 downloads since deposited on 11 Feb 2008
24 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Biochemistry and Molecular Biology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:6 March 2006
Deposited On:11 Feb 2008 12:18
Last Modified:05 Apr 2016 12:15
Publisher:Oxford University Press
ISSN:0305-1048
Publisher DOI:10.1093/nar/gkl032
PubMed ID:16522650
Permanent URL: http://doi.org/10.5167/uzh-772

Download

[img]
Preview
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations