UZH-Logo

Maintenance Infos

Reflectance continuum removal spectral index tracking the xanthophyll cycle photoprotective reactions in Norway spruce needles


Kováč, Daniel; Navrátil, Martin; Malenovský, Zbyněk; Štroch, Michal; Špunda, Vladimír; Urban, Otmar (2012). Reflectance continuum removal spectral index tracking the xanthophyll cycle photoprotective reactions in Norway spruce needles. Functional Plant Biology, 39(12):987-998.

Abstract

This laboratory experiment tested the ability of the spectral index called ‘area under curve normalised to maximal band depth’ (ANMB) to track dynamic changes in the xanthophyll cycle of Norway spruce (Picea abies (L.) Karsten) needles. Four-year-old spruce seedlings were gradually acclimated to different photosynthetic photon flux densities (PPFDs) and air temperature regimes. The measurements were conducted at the end of each acclimation period lasting for 11 days. A significant decline in the chlorophylls to carotenoids ratio and the increase of the amount of xanthophyll cycle pigments indicated a higher need for carotenoid-mediated photoprotection in spruce leaves acclimated to high PPFD conditions. Similarly, the photochemical reflectance index (PRI) changed from positive to negative values after changing light conditions from low to high intensity as a consequence of the increase in carotenoid content. Systematic responses of PRI to the de-epoxidation state of xanthophyll cycle pigments (DEPS) were, however, observed only during high temperature treatments and after the exposition of needles to high irradiance. The ANMB index computed from needle reflectance between 507 and 556 nm was able to track dynamic changes in DEPS without any influence induced by changing the content of leaf photosynthetic pigments (chlorophylls, carotenoids).

This laboratory experiment tested the ability of the spectral index called ‘area under curve normalised to maximal band depth’ (ANMB) to track dynamic changes in the xanthophyll cycle of Norway spruce (Picea abies (L.) Karsten) needles. Four-year-old spruce seedlings were gradually acclimated to different photosynthetic photon flux densities (PPFDs) and air temperature regimes. The measurements were conducted at the end of each acclimation period lasting for 11 days. A significant decline in the chlorophylls to carotenoids ratio and the increase of the amount of xanthophyll cycle pigments indicated a higher need for carotenoid-mediated photoprotection in spruce leaves acclimated to high PPFD conditions. Similarly, the photochemical reflectance index (PRI) changed from positive to negative values after changing light conditions from low to high intensity as a consequence of the increase in carotenoid content. Systematic responses of PRI to the de-epoxidation state of xanthophyll cycle pigments (DEPS) were, however, observed only during high temperature treatments and after the exposition of needles to high irradiance. The ANMB index computed from needle reflectance between 507 and 556 nm was able to track dynamic changes in DEPS without any influence induced by changing the content of leaf photosynthetic pigments (chlorophylls, carotenoids).

Citations

2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2012
Deposited On:09 Apr 2013 08:56
Last Modified:05 Apr 2016 16:44
Publisher:CSIRO
ISSN:1445-4416
Publisher DOI:https://doi.org/10.1071/FP12107

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations