UZH-Logo

Maintenance Infos

Correction of reflectance anisotropy effects of vegetation on airborne spectroscopy data and derived products


Weyermann, Jörg; Damm, Alexander; Kneubühler, Mathias; Schaepman, Michael E (2014). Correction of reflectance anisotropy effects of vegetation on airborne spectroscopy data and derived products. IEEE Transactions on Geoscience and Remote Sensing, 52(1):616-627.

Abstract

Directional effects in airborne imaging spectrometer (IS) data are mainly caused by anisotropic reflectance behavior of surfaces, commonly described by bi-directional reflectance distribution functions (BRDF). The radiometric and spectral accuracy of IS data is known to be highly influenced by such effects, which prevents consistent comparison of products. Several models were developed to approximate surface reflectance anisotropy for multi-angular observations. Few studies were carried out using such models for airborne flight lines where only a single observation is available for each ground location. In the present work, we quantified and corrected reflectance anisotropy on a single airborne HyMap flight line using a Ross–Li model. We stratified the surface in two vegetation structural types (different in vertical structuring) using spectral angle mapping, to generate a structure dependent set of angular observations. We then derived a suite of products [indices (structure insensitive pigment index, normalized difference vegetation index, simple ratio index, and anthocyanin reflectance index) and inversion-based (SAIL/PROSPECT—leaf area index, Cw, Cdm, Cab)] from corrected and uncorrected images. Non-parametric analysis of variance (Kruskal–Wallis test) showed throughout significant improvements in products from corrected images. Data correction resulting in airborne nadir BRDF adjusted reflectance (aNBAR) showed uncertainty reductions from 60 to 100% (p-value = 0.05) as compared to uncorrected and nadir observations. Using sparse IS data acquisitions, the use of fully parametrized BRDF models is limited. Our normalization scheme is straightforward and can be applied with illumination and observation geometry being the only a priori information. We recommend aNBAR generation to precede any higher level airborne IS product generation based on reflectance data.

Abstract

Directional effects in airborne imaging spectrometer (IS) data are mainly caused by anisotropic reflectance behavior of surfaces, commonly described by bi-directional reflectance distribution functions (BRDF). The radiometric and spectral accuracy of IS data is known to be highly influenced by such effects, which prevents consistent comparison of products. Several models were developed to approximate surface reflectance anisotropy for multi-angular observations. Few studies were carried out using such models for airborne flight lines where only a single observation is available for each ground location. In the present work, we quantified and corrected reflectance anisotropy on a single airborne HyMap flight line using a Ross–Li model. We stratified the surface in two vegetation structural types (different in vertical structuring) using spectral angle mapping, to generate a structure dependent set of angular observations. We then derived a suite of products [indices (structure insensitive pigment index, normalized difference vegetation index, simple ratio index, and anthocyanin reflectance index) and inversion-based (SAIL/PROSPECT—leaf area index, Cw, Cdm, Cab)] from corrected and uncorrected images. Non-parametric analysis of variance (Kruskal–Wallis test) showed throughout significant improvements in products from corrected images. Data correction resulting in airborne nadir BRDF adjusted reflectance (aNBAR) showed uncertainty reductions from 60 to 100% (p-value = 0.05) as compared to uncorrected and nadir observations. Using sparse IS data acquisitions, the use of fully parametrized BRDF models is limited. Our normalization scheme is straightforward and can be applied with illumination and observation geometry being the only a priori information. We recommend aNBAR generation to precede any higher level airborne IS product generation based on reflectance data.

Citations

8 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 10 Apr 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2014
Deposited On:10 Apr 2013 08:05
Last Modified:05 Apr 2016 16:44
Publisher:Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Publisher DOI:https://doi.org/10.1109/TGRS.2013.2242898

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations