UZH-Logo

Maintenance Infos

Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics


Picotti, Paola; Bodenmiller, Bernd; Mueller, Lukas N; Domon, Bruno; Aebersold, Ruedi (2009). Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell, 138(4):795-806.

Abstract

The rise of systems biology implied a growing demand for highly sensitive techniques for the fast and consistent detection and quantification of target sets of proteins across multiple samples. This is only partly achieved by classical mass spectrometry or affinity-based methods. We applied a targeted proteomics approach based on selected reaction monitoring (SRM) to detect and quantify proteins expressed to a concentration below 50 copies/cell in total S. cerevisiae digests. The detection range can be extended to single-digit copies/cell and to proteins undetected by classical methods. We illustrate the power of the technique by the consistent and fast measurement of a network of proteins spanning the entire abundance range over a growth time course of S. cerevisiae transiting through a series of metabolic phases. We therefore demonstrate the potential of SRM-based proteomics to provide assays for the measurement of any set of proteins of interest in yeast at high-throughput and quantitative accuracy.

Abstract

The rise of systems biology implied a growing demand for highly sensitive techniques for the fast and consistent detection and quantification of target sets of proteins across multiple samples. This is only partly achieved by classical mass spectrometry or affinity-based methods. We applied a targeted proteomics approach based on selected reaction monitoring (SRM) to detect and quantify proteins expressed to a concentration below 50 copies/cell in total S. cerevisiae digests. The detection range can be extended to single-digit copies/cell and to proteins undetected by classical methods. We illustrate the power of the technique by the consistent and fast measurement of a network of proteins spanning the entire abundance range over a growth time course of S. cerevisiae transiting through a series of metabolic phases. We therefore demonstrate the potential of SRM-based proteomics to provide assays for the measurement of any set of proteins of interest in yeast at high-throughput and quantitative accuracy.

Citations

466 citations in Web of Science®
491 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2009
Deposited On:24 Apr 2013 11:14
Last Modified:05 Apr 2016 16:44
Publisher:Cell Press (Elsevier)
ISSN:0092-8674
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.cell.2009.05.051
PubMed ID:19664813

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations