Regio- and stereoselective formation of 1,3-Oxathiolanes by reactions of thiocarbonyl compounds with oxiranes

Fu, Changchun; Blagoev, Milen; Linden, Anthony; Heimgartner, Heinz

Abstract: Lewis acid-catalyzed reactions of oxiranes with a variety of C=S compounds yield 1,3-oxathiolanes. The ring enlargement of monosubstituted oxiranes occurs regioselectively via cleavage of the O,C(3) bond of alkyl substituted oxiranes and the O,C(2) bond of phenyl oxirane. Furthermore, the reaction proceeds with inversion of the configuration at the center of the nucleophilic attack by the S-atom. The formation of thiocarbonylium ions as intermediates is supported by Wagner–Meerwein-type rearrangements. Enolized thioketones react with oxiranes to give enesulfanyl alcohols, which undergo an acid-catalyzed cyclization to yield 1,3-oxathiolanes.

DOI: https://doi.org/10.1080/10426500590912240

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-77376
Accepted Version

Originally published at:
Fu, Changchun; Blagoev, Milen; Linden, Anthony; Heimgartner, Heinz (2005). Regio- and stereoselective formation of 1,3-Oxathiolanes by reactions of thiocarbonyl compounds with oxiranes. Phosphorus, Sulfur and Silicon and the Related Elements, 180(5-6):1309-1313.
DOI: https://doi.org/10.1080/10426500590912240
REGIO- AND STEREOSELECTIVE FORMATION OF 1,3-OXATHIOLANES BY REACTIONS OF THIOCARBONYL COMPOUNDS WITH OXIRANES

Changchun Fu, Milen Blagoev, Anthony Linden, and Heinz Heimgartner

Institute of Organic Chemistry, University of Zürich
Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
E-mail: heimgart@oci.unizh.ch

Abstract

Lewis acid-catalyzed reactions of oxiranes with a variety of C=S compounds yield 1,3-oxathiolanes. The ring enlargement of monosubstituted oxiranes occurs regioselectively via cleavage of the O,C(3) bond of alkyl substituted oxiranes and the O,C(2) bond of phenyl oxirane. Furthermore, the reaction proceeds with inversion of the configuration at the center of the nucleophilic attack by the S-atom. The formation of thiocarbonylium ions as intermediates is supported by Wagner-Meerwein type rearrangements. Enolized thioketones react with oxiranes to give enesulfanyl alcohols, which undergo an acid-catalyzed cyclization to yield 1,3-oxathiolanes.

INTRODUCTION

In general, 1,3-oxathiolanes are prepared by the reaction of carbonyl compounds with 2-sulfanylalkan-1-ols. Alternatively, 1,3-dipolar cycloadditions of carbonyl ylides with C=S and thiocarbonyl ylides with C=O compounds, respectively, lead to the same heterocyclic system (cf. refs. cited in [1]). Some years ago, we discovered that the Lewis acid-catalyzed reaction of oxiranes with 4,4-disubstituted 1,3-thiazole-5(4H)-thiones and trithiocarbonates, respectively, offers another convenient access to 1,3-oxathiolanes [1,2]. For example, 1,3-dithiolane-2-thione (1) and 2-ethyloxirane (2a) in 1,2-dichloroethane and TiCl4 at -20°C gave the spirocyclic 1,3-oxathiolanes 3a and 4a (R = Et) in a ratio of 15:1 (Scheme 1). On the other hand, the ratio 3b/4b (R = Ph) was determined to be 1:20 [2].

Scheme 1

RESULTS

Treatment of a mixture of 1,3-thiazole-5(4H)-thione 5 and 1,2-epoxycyclopentane (6) in dichloroethane at -78°C with BF3⋅Et2O gives the two diastereoisomeric 1,3-oxathiolanes 7 and 8 in 74-84% yield (ratio ca. 3:1) [3] (Scheme 2). Another efficient catalyst is SnCl4. Both isomers show a trans-fusion of the cyclopentane and 1,3-oxathiolane ring. Analogous results are obtained with 1,2-epoxycyclohexane [3] and cis- and trans-2,3-dimethyloxirane [4]. Obviously, the opening of the oxirane ring occurs by nucleophilic attack of the S-atom under
inversion of the configuration (SN2-type), leading to an intermediate thiocarbonylium cation of type A. An indication of the cationic intermediate is the Wagner-Meerwein rearrangement, which leads to the minor product 9.

Scheme 2

Recently, it has been shown that the reaction of 4,4-dimethyl-2-phenyl-1,3-thiazole-5(4H)-thione (5a) and (R)-2-phenyloxirane ((R)-2b) in dichloromethane can also be catalyzed by SiO2 [5]. The corresponding spirocyclic 1,3-oxathiolanes are formed with high diastereoselectivity and inversion of the configuration of the oxirane. Similar results are obtained with non-enolizable thiketoncs such as 10–14 [4–7].

In some cases, 1,3-dithiolanes and 1,3-dioxolanes are formed in addition to 1,3-oxathiolanes [4,6,7]. For example, the BF3-catalyzed reaction of thiobenzophenone (13a) and 1,2-epoxycyclohexane (15) in dichloromethane at -50°C yields 16, 17a, and 17b [6]. It has been shown that 17a and 17b are secondary products, which are formed by decomposition of 16 to give benzophenone and 1,2-epithiocyclohexane and subsequent reaction with oxirane 15 and thiobenzophenone 13a, respectively.

Scheme 3

Another minor product, observed in the reaction of 4,4′-dimethoxythiobenzophenone (13b) with 2-methyloxirane (2c) is the 1,3,6-dioxathiocane 19 [7,8] (Scheme 4). It is noteworthy that only the homochiral trans isomer is formed even though racemic 2c is used. The same product is obtained when a mixture of the major product 18 and 2c is treated with BF3·Et2O at
-90°C. Using (S)-2c in the reaction with 13b, (S)-18 and (S,S)-19 are formed with 98 and >99% ee, respectively. On the other hand, no 1:2 adduct (R,S)-19 could be detected in attempted reactions of (R)-18 with (S)-2c.

Scheme 4

In the case of enolizable thiocamphor (20), the SiO₂-catalyzed reaction with (S)-2c leads to a mixture of the 1,3-oxathiolane 21 and the enesulfanyl alcohol 22 [9] (Scheme 5). The latter can be cyclized under acidic conditions to give a mixture of 21 and a diastereoisomer. The 1,3-oxathiolane 21 is acid-sensitive and undergoes a rearrangement to the second diastereoisomer. This isomerization shows clearly that the formation of the 1,3-oxathiolanes is reversible.

Scheme 5

With 1,3-diphenylprop-1-ene-2-thiol (23), the enolized form of dibenzylthioketone, 2-methyl- and 2-phenyloxirane react under SiO₂ catalysis to give E/Z isomers of the corresponding enesulfanyl alcohols with high ee values [8] (Scheme 6). On treatment with HCl gas, a cyclization to yield 1,3-oxathiolanes takes place.

Scheme 6

Similar to thioketones, thiolactones react with 2b and 2c. For example, the SiO₂-catalyzed reaction of 25 leads to spirocyclic O,O,S-orthoesters 26 and 27, respectively, with high stereoselectivity [10] (Scheme 7).
Furthermore, chemo-, regio- and stereoselective 1,3-oxathiolane formations are observed with (Z)-5-benzylidene-3-phenyl-2-thioxo-1,3-thiazolidin-4-one 28 [11] (Scheme 8). With (S)-2-methyloxirane ((S)-2c), after 50% conversion of 28, the 1,3-oxathiolanes 29a and 29b are obtained in 23 and 19% yield, respectively.

REFERENCES: