UZH-Logo

Maintenance Infos

The problem of thresholding in small-world network analysis


Langer, Nicolas; Pedroni, Andreas; Jäncke, Lutz (2013). The problem of thresholding in small-world network analysis. PLoS ONE, 8(1):e53199.

Abstract

Graph theory deterministically models networks as sets of vertices, which are linked by connections. Such mathematical representation of networks, called graphs are increasingly used in neuroscience to model functional brain networks. It was shown that many forms of structural and functional brain networks have small-world characteristics, thus, constitute networks of dense local and highly effective distal information processing. Motivated by a previous small-world connectivity analysis of resting EEG-data we explored implications of a commonly used analysis approach. This common course of analysis is to compare small-world characteristics between two groups using classical inferential statistics. This however, becomes problematic when using measures of inter-subject correlations, as it is the case in commonly used brain imaging methods such as structural and diffusion tensor imaging with the exception of fibre tracking. Since for each voxel, or region there is only one data point, a measure of connectivity can only be computed for a group. To empirically determine an adequate small-world network threshold and to generate the necessary distribution of measures for classical inferential statistics, samples are generated by thresholding the networks on the group level over a range of thresholds. We believe that there are mainly two problems with this approach. First, the number of thresholded networks is arbitrary. Second, the obtained thresholded networks are not independent samples. Both issues become problematic when using commonly applied parametric statistical tests. Here, we demonstrate potential consequences of the number of thresholds and non-independency of samples in two examples (using artificial data and EEG data). Consequently alternative approaches are presented, which overcome these methodological issues.

Graph theory deterministically models networks as sets of vertices, which are linked by connections. Such mathematical representation of networks, called graphs are increasingly used in neuroscience to model functional brain networks. It was shown that many forms of structural and functional brain networks have small-world characteristics, thus, constitute networks of dense local and highly effective distal information processing. Motivated by a previous small-world connectivity analysis of resting EEG-data we explored implications of a commonly used analysis approach. This common course of analysis is to compare small-world characteristics between two groups using classical inferential statistics. This however, becomes problematic when using measures of inter-subject correlations, as it is the case in commonly used brain imaging methods such as structural and diffusion tensor imaging with the exception of fibre tracking. Since for each voxel, or region there is only one data point, a measure of connectivity can only be computed for a group. To empirically determine an adequate small-world network threshold and to generate the necessary distribution of measures for classical inferential statistics, samples are generated by thresholding the networks on the group level over a range of thresholds. We believe that there are mainly two problems with this approach. First, the number of thresholded networks is arbitrary. Second, the obtained thresholded networks are not independent samples. Both issues become problematic when using commonly applied parametric statistical tests. Here, we demonstrate potential consequences of the number of thresholds and non-independency of samples in two examples (using artificial data and EEG data). Consequently alternative approaches are presented, which overcome these methodological issues.

Citations

22 citations in Web of Science®
22 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

26 downloads since deposited on 19 Apr 2013
18 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
Dewey Decimal Classification:150 Psychology
Date:2013
Deposited On:19 Apr 2013 09:47
Last Modified:27 Jun 2016 09:59
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0053199
PubMed ID:23301043
Permanent URL: https://doi.org/10.5167/uzh-77658

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations