UZH-Logo

Maintenance Infos

Neuroplasticity of sign language: implications from structural and functional brain imaging


Meyer, Martin; Toepel, Ulrike; Keller, Joerg; Nussbaumer, Daniela; Zysset, Stefan; Friederici, Angela D (2007). Neuroplasticity of sign language: implications from structural and functional brain imaging. Restorative Neurology and Neuroscience, 25(3-4):335-351.

Abstract

PURPOSE: The present study was designed to investigate the neural correlates of German Sign Language (Deutsche Gebärdensprache; DGS) processing. In particular, was expected the impact of the visuo-spatial mode in sign language on underlying neural networks compared to the impact of the interpretation of linguistic information.

METHODS: For this purpose, two groups of participants took part in a functional MRI study at 3 Tesla. One group consisted of prelingually deafened users of DGS, the other group of hearing non-signers naïve to sign language. The two groups were presented with identical video sequences comprising DGS sentences in form of dialoges. To account for substantial interindividual anatomical variability observed in the group of deaf participants, the brain responses in the two groups of subjects were analyzed with two different procedures.

RESULTS: Results from a multi-subject averaging approach were contrasted with an analysis, which can account for the considerable inter-individual variability of gross anatomical landmarks. The anatomy-based approach indicated that individuals' responses to proper DGS processing was tied up with a leftward asymmetry in the dorsolateral prefrontal cortex, anterior and middle temporal gyrus, and visual association cortices. In contrast, standard multi-subject averaging of deaf individuals during DGS perception revealed a less lateralized peri- and extrasylvian network. Furthermore, voxel-based analyses of the brains' morphometry evidenced a white-matter deficit in the left posterior longitudinal and inferior uncinate fasciculi and a steeper slope of the posterior part of the left Sylvian Fissure (SF) in the deaf individuals.

CONCLUSION: These findings may imply that the cerebral anatomy of deaf individuals has undergone structural changes as a function of monomodal visual sign language perception during childhood and adolescence.

PURPOSE: The present study was designed to investigate the neural correlates of German Sign Language (Deutsche Gebärdensprache; DGS) processing. In particular, was expected the impact of the visuo-spatial mode in sign language on underlying neural networks compared to the impact of the interpretation of linguistic information.

METHODS: For this purpose, two groups of participants took part in a functional MRI study at 3 Tesla. One group consisted of prelingually deafened users of DGS, the other group of hearing non-signers naïve to sign language. The two groups were presented with identical video sequences comprising DGS sentences in form of dialoges. To account for substantial interindividual anatomical variability observed in the group of deaf participants, the brain responses in the two groups of subjects were analyzed with two different procedures.

RESULTS: Results from a multi-subject averaging approach were contrasted with an analysis, which can account for the considerable inter-individual variability of gross anatomical landmarks. The anatomy-based approach indicated that individuals' responses to proper DGS processing was tied up with a leftward asymmetry in the dorsolateral prefrontal cortex, anterior and middle temporal gyrus, and visual association cortices. In contrast, standard multi-subject averaging of deaf individuals during DGS perception revealed a less lateralized peri- and extrasylvian network. Furthermore, voxel-based analyses of the brains' morphometry evidenced a white-matter deficit in the left posterior longitudinal and inferior uncinate fasciculi and a steeper slope of the posterior part of the left Sylvian Fissure (SF) in the deaf individuals.

CONCLUSION: These findings may imply that the cerebral anatomy of deaf individuals has undergone structural changes as a function of monomodal visual sign language perception during childhood and adolescence.

Citations

14 citations in Web of Science®
17 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
Dewey Decimal Classification:150 Psychology
Date:2007
Deposited On:29 Apr 2013 13:38
Last Modified:05 Apr 2016 16:45
Publisher:IOS Press
ISSN:0922-6028
PubMed ID:17943010

Download

Full text not available from this repository.

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations