UZH-Logo

Maintenance Infos

The crystal structure of an octapeptide repeat of the Prion protein in complex with a fab fragment of the POM2 antibody


Swayampakula, Mridula; Baral, Pravas Kumar; Aguzzi, Adriano; Kav, Nat N V; James, Michael N G (2013). The crystal structure of an octapeptide repeat of the Prion protein in complex with a fab fragment of the POM2 antibody. Protein Science, 22(7):893-903.

Abstract

Prion diseases are progressive, infectious neurodegenerative disorders caused primarily by the misfolding of the cellular prion protein, PrP(c) , into an insoluble, protease-resistant, aggregated isoform termed PrP(sc) . In native conditions, PrP(c) has a structured C-terminal domain and a highly flexible N-terminal domain. A part of this N-terminal domain consists of 4-5 repeats of an unusual glycine rich, eight amino acids long peptide known as the octapeptide repeat (OR) domain. In this paper, we successfully report the first crystal structure of an octapeptide repeat of PrP(c) bound to the POM2 Fab antibody fragment. The structure was solved at a resolution of 2.3 Å by molecular replacement. While several studies have previously predicted a β-turn like structure of the unbound octapeptide repeats, our structure shows an extended conformation of the octapeptide repeat when bound to a molecule of the POM2 Fab indicating that the bound Fab disrupts any putative native β turn conformation of the octapeptide repeats. Encouraging results from several recent studies have shown that administering small molecule ligands or antibodies targeting the OR domain of PrP result in arresting the progress of peripheral prion infections both in ex vivo and in in vivo models. This makes the structural study of the interactions of POM2 Fab with the OR domain very important as it would help us to design smaller and tighter binding OR ligands.

Prion diseases are progressive, infectious neurodegenerative disorders caused primarily by the misfolding of the cellular prion protein, PrP(c) , into an insoluble, protease-resistant, aggregated isoform termed PrP(sc) . In native conditions, PrP(c) has a structured C-terminal domain and a highly flexible N-terminal domain. A part of this N-terminal domain consists of 4-5 repeats of an unusual glycine rich, eight amino acids long peptide known as the octapeptide repeat (OR) domain. In this paper, we successfully report the first crystal structure of an octapeptide repeat of PrP(c) bound to the POM2 Fab antibody fragment. The structure was solved at a resolution of 2.3 Å by molecular replacement. While several studies have previously predicted a β-turn like structure of the unbound octapeptide repeats, our structure shows an extended conformation of the octapeptide repeat when bound to a molecule of the POM2 Fab indicating that the bound Fab disrupts any putative native β turn conformation of the octapeptide repeats. Encouraging results from several recent studies have shown that administering small molecule ligands or antibodies targeting the OR domain of PrP result in arresting the progress of peripheral prion infections both in ex vivo and in in vivo models. This makes the structural study of the interactions of POM2 Fab with the OR domain very important as it would help us to design smaller and tighter binding OR ligands.

Citations

3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

7 downloads since deposited on 02 May 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2013
Deposited On:02 May 2013 08:20
Last Modified:05 Apr 2016 16:46
Publisher:John Wiley & Sons, Inc.
ISSN:1469-896X
Publisher DOI:https://doi.org/10.1002/pro.2270
PubMed ID:23629842
Permanent URL: https://doi.org/10.5167/uzh-77891

Download

[img]
Content: Accepted Version
Filetype: PDF - Registered users only
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations