UZH-Logo

Maintenance Infos

Influence of micro and submicro poly(lactic-glycolic acid) fibers on sensory neural cell locomotion and neurite growth


Binder, Carmen; Milleret, Vincent; Hall, Heike; Eberli, Daniel; Lühmann, Tessa (2013). Influence of micro and submicro poly(lactic-glycolic acid) fibers on sensory neural cell locomotion and neurite growth. Journal of Biomedical Materials Research. Part B, 101(7):1200-1208.

Abstract

For successful peripheral nerve regeneration, a complex interplay of growth factors, topographical guidance structure by cells and extracellular matrix proteins, are needed. Aligned fibrous biomaterials with a wide variety in fiber diameter have been used successfully to support neuronal guidance. To better understand the importance of size of the topographical features, we investigated the directionality of neuronal migration of sensory ND7/23 cells on aligned electrospun poly(lactic-glycolic acid) PLGA fibers in the range of micrometer and submicrometer diameters by time-lapse microscopy. Cell trajectories of single ND7/23 cells were found to significantly follow topographies of PLGA fibers with micrometer dimensions in contrast to PLGA fibers within the submicrometer range, where cell body movement was observed to be independent of fibrous structures. Moreover, neurite alignment of ND7/23 cells on various topographies was assessed. PLGA fibers with micrometer dimensions significantly aligned 83.3% of all neurites after 1 day of differentiation compared to similar submicrometer structures, which orientated 25.8% of all neurites. Interestingly, after 7 days of differentiation ND7/23 cells on submicrometer PLGA fibers increased their alignment of neurites to 52.5%. Together, aligned PLGA fibers with micrometer dimensions showed a superior influence on directionality of neuronal migration and neurite outgrowth of sensory ND7/23 cells, indicating that electrospun micro-PLGA fibers might represent a potential material to induce directionality of neuronal growth in engineering applications for sensory nerve regeneration. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2013.

For successful peripheral nerve regeneration, a complex interplay of growth factors, topographical guidance structure by cells and extracellular matrix proteins, are needed. Aligned fibrous biomaterials with a wide variety in fiber diameter have been used successfully to support neuronal guidance. To better understand the importance of size of the topographical features, we investigated the directionality of neuronal migration of sensory ND7/23 cells on aligned electrospun poly(lactic-glycolic acid) PLGA fibers in the range of micrometer and submicrometer diameters by time-lapse microscopy. Cell trajectories of single ND7/23 cells were found to significantly follow topographies of PLGA fibers with micrometer dimensions in contrast to PLGA fibers within the submicrometer range, where cell body movement was observed to be independent of fibrous structures. Moreover, neurite alignment of ND7/23 cells on various topographies was assessed. PLGA fibers with micrometer dimensions significantly aligned 83.3% of all neurites after 1 day of differentiation compared to similar submicrometer structures, which orientated 25.8% of all neurites. Interestingly, after 7 days of differentiation ND7/23 cells on submicrometer PLGA fibers increased their alignment of neurites to 52.5%. Together, aligned PLGA fibers with micrometer dimensions showed a superior influence on directionality of neuronal migration and neurite outgrowth of sensory ND7/23 cells, indicating that electrospun micro-PLGA fibers might represent a potential material to induce directionality of neuronal growth in engineering applications for sensory nerve regeneration. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2013.

Citations

4 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Obstetrics
04 Faculty of Medicine > University Hospital Zurich > Urological Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2013
Deposited On:14 May 2013 07:51
Last Modified:05 Apr 2016 16:47
Publisher:Wiley-Blackwell
ISSN:1552-4973
Publisher DOI:https://doi.org/10.1002/jbm.b.32931
PubMed ID:23650277

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations