UZH-Logo

Maintenance Infos

The human insula: Architectonic organization and postmortem MRI registration


Morel, A; Gallay, M N; Baechler, A; Wyss, M; Galley, D S (2013). The human insula: Architectonic organization and postmortem MRI registration. Neuroscience, 236:117-135.

Abstract

The human insula has been the focus of great attention in the last decade due to substantial progress in neuroimaging methodology and applications. Anatomical support for functional localization and interpretations, however, is still fragmented. The aim of the present study was to re-examine the microanatomical organization of the insula and relate cytoarchitectonic maps to major sulcal/gyral patterns by registration to high-resolution MR images of the same brains. The insula was divided into seven architectonic subdivisions (G, Ig, Id1-3, Ia1-2) that were charted on unfolded maps of the insula following a method used previously in monkeys. The results reveal overall similar patterns of Nissl, and to some extent also, myelin and parvalbumin (PV), as in monkeys, with a postero-dorsal to antero-ventral gradient of hypergranular to granular, dysgranular and agranular fields. Reversals occur ventrally along the inferior peri-insular sulcus (IPS), at the margin with the temporal operculum, and anteriorly at the limit with orbitofrontal cortex (OFC). A large portion of agranular cortex is characterized by a dense accumulation of the spindle-shaped von Economo neurons (VENs) in layer V. The distribution of VENs is not restricted to agranular insula but also extends into the anterior part of dysgranular fields. The patterns of intracortical myelin and of PV neuropil in the middle layers follow decreasing gradients from postero-dorsal granular to antero-ventral agranular insula, with particularly strong staining in posterior and dorsal insula. A separate PV enhanced area in the middle-dorsal insula corresponds in location to the presumed human gustatory area. Projections of the cytoarchitectonic maps onto high-resolution stereotactic MRI reveal a near concentric organization around the limen insula, with each cytoarchitectonic subdivision encompassing several major insular gyri/sulci. The dysgranular domain is the largest, taking up about half of the insula. The present study of the human insula provides a new anatomical basis for MR imaging and clinical applications.

The human insula has been the focus of great attention in the last decade due to substantial progress in neuroimaging methodology and applications. Anatomical support for functional localization and interpretations, however, is still fragmented. The aim of the present study was to re-examine the microanatomical organization of the insula and relate cytoarchitectonic maps to major sulcal/gyral patterns by registration to high-resolution MR images of the same brains. The insula was divided into seven architectonic subdivisions (G, Ig, Id1-3, Ia1-2) that were charted on unfolded maps of the insula following a method used previously in monkeys. The results reveal overall similar patterns of Nissl, and to some extent also, myelin and parvalbumin (PV), as in monkeys, with a postero-dorsal to antero-ventral gradient of hypergranular to granular, dysgranular and agranular fields. Reversals occur ventrally along the inferior peri-insular sulcus (IPS), at the margin with the temporal operculum, and anteriorly at the limit with orbitofrontal cortex (OFC). A large portion of agranular cortex is characterized by a dense accumulation of the spindle-shaped von Economo neurons (VENs) in layer V. The distribution of VENs is not restricted to agranular insula but also extends into the anterior part of dysgranular fields. The patterns of intracortical myelin and of PV neuropil in the middle layers follow decreasing gradients from postero-dorsal granular to antero-ventral agranular insula, with particularly strong staining in posterior and dorsal insula. A separate PV enhanced area in the middle-dorsal insula corresponds in location to the presumed human gustatory area. Projections of the cytoarchitectonic maps onto high-resolution stereotactic MRI reveal a near concentric organization around the limen insula, with each cytoarchitectonic subdivision encompassing several major insular gyri/sulci. The dysgranular domain is the largest, taking up about half of the insula. The present study of the human insula provides a new anatomical basis for MR imaging and clinical applications.

Citations

19 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

79 downloads since deposited on 22 May 2013
23 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurosurgery
04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:16 April 2013
Deposited On:22 May 2013 12:56
Last Modified:05 Apr 2016 16:47
Publisher:Elsevier
ISSN:0306-4522
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.neuroscience.2012.12.076
PubMed ID:23340245
Permanent URL: https://doi.org/10.5167/uzh-78131

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 3MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations