UZH-Logo

Maintenance Infos

Quantifying the importance of local niche-based and stochastic processes to tropical tree community assembly


Shipley, Bill; Paine, C E Timothy; Baraloto, Christopher (2012). Quantifying the importance of local niche-based and stochastic processes to tropical tree community assembly. Ecology, 93(4):760-769.

Abstract

Although niche-based and stochastic processes, including dispersal limitation and demographic stochasticity, can each contribute to community assembly, it is difficult to quantify the relative importance of each process in natural vegetation. Here, we extend Shipley's maxent model (Community Assembly by Trait Selection, CATS) for the prediction of relative abundances to incorporate both trait-based filtering and dispersal limitation from the larger landscape and develop a statistical decomposition of the proportions of the total information content of relative abundances in local communities that are attributable to trait-based filtering, dispersal limitation, and demographic stochasticity. We apply the method to tree communities in a mature, species-rich, tropical forest in French Guiana at 1-, 0.25- and 0.04-ha scales. Trait data consisted of species' means of 17 functional traits measured over both the entire meta-community and separately in each of nine 1-ha plots. Trait means calculated separately for each site always gave better predictions. There was clear evidence of trait-based filtering at all spatial scales. Trait-based filtering was the most important process at the 1-ha scale (34%), whereas demographic stochasticity was the most important at smaller scales (37–53%). Dispersal limitation from the meta-community was less important and approximately constant across scales (9%), and there was also an unresolved association between site-specific traits and meta-community relative abundances. Our method allows one to quantify the relative importance of local niche-based and meta-community processes and demographic stochasticity during community assembly across spatial and temporal scales.

Abstract

Although niche-based and stochastic processes, including dispersal limitation and demographic stochasticity, can each contribute to community assembly, it is difficult to quantify the relative importance of each process in natural vegetation. Here, we extend Shipley's maxent model (Community Assembly by Trait Selection, CATS) for the prediction of relative abundances to incorporate both trait-based filtering and dispersal limitation from the larger landscape and develop a statistical decomposition of the proportions of the total information content of relative abundances in local communities that are attributable to trait-based filtering, dispersal limitation, and demographic stochasticity. We apply the method to tree communities in a mature, species-rich, tropical forest in French Guiana at 1-, 0.25- and 0.04-ha scales. Trait data consisted of species' means of 17 functional traits measured over both the entire meta-community and separately in each of nine 1-ha plots. Trait means calculated separately for each site always gave better predictions. There was clear evidence of trait-based filtering at all spatial scales. Trait-based filtering was the most important process at the 1-ha scale (34%), whereas demographic stochasticity was the most important at smaller scales (37–53%). Dispersal limitation from the meta-community was less important and approximately constant across scales (9%), and there was also an unresolved association between site-specific traits and meta-community relative abundances. Our method allows one to quantify the relative importance of local niche-based and meta-community processes and demographic stochasticity during community assembly across spatial and temporal scales.

Citations

31 citations in Web of Science®
31 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

79 downloads since deposited on 30 May 2013
14 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:2012
Deposited On:30 May 2013 13:52
Last Modified:05 Apr 2016 16:48
Publisher:Ecological Society of America
ISSN:0012-9658
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1890/11-0944.1

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations