The Rapamycin-sensitive Phosphoproteome Reveals That TOR Controls Protein Kinase A Toward Some But Not All Substrates

Soulard, Alexandre; Cremonesi, Alessio; Moes, Suzette; Schütz, Frédéric; Jenö, Paul; Hall, Michael N

Abstract: Regulation of cell growth requires extensive coordination of several processes including transcription, ribosome biogenesis, translation, nutrient metabolism, and autophagy. In yeast, the protein kinases Target of Rapamycin (TOR) and protein kinase A (PKA) regulate these processes and are thereby the main activators of cell growth in response to nutrients. How TOR, PKA, and their corresponding signaling pathways are coordinated to control the same cellular processes is not understood. Quantitative analysis of the rapamycin-sensitive phosphoproteome combined with targeted analysis of PKA substrates suggests that TOR complex 1 (TORC1) activates PKA but only toward a subset of substrates. Furthermore, we show that TORC1 signaling impinges on BCY1, the negative regulatory subunit of PKA. Inhibition of TORC1 with rapamycin leads to BCY1 phosphorylation on several sites including T129. Phosphorylation of BCY1 T129 results in BCY1 activation and inhibition of PKA. TORC1 inhibits BCY1 T129 phosphorylation by phosphorylating and activating the S6K homolog SCH9 that in turn inhibits the MAP kinase MPK1. MPK1 phosphorylates BCY1 T129 directly. Thus, TORC1 activates PKA toward some substrates by preventing MPK1-mediated activation of BCY1.

DOI: https://doi.org/10.1091/mbc.E10-03-0182

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-78932

Originally published at:
Soulard, Alexandre; Cremonesi, Alessio; Moes, Suzette; Schütz, Frédéric; Jenö, Paul; Hall, Michael N (2010). The Rapamycin-sensitive Phosphoproteome Reveals That TOR Controls Protein Kinase A Toward Some But Not All Substrates. Molecular Biology of the Cell, 21:3475-3486.
DOI: https://doi.org/10.1091/mbc.E10-03-0182
The Rapamycin-sensitive Phosphoproteome Reveals That TOR Controls Protein Kinase A Toward Some But Not All Substrates

Alexandre Soulard,* Alessio Cremonesi,* Suzette Moes, Frédéric Schütz, Paul Jenö, and Michael N. Hall

Biozentrum, University of Basel, CH-4056 Basel, Switzerland

Submitted March 3, 2010; Revised July 6, 2010; Accepted August 4, 2010
Monitoring Editor: Daniel Lew

Regulation of cell growth requires extensive coordination of several processes including transcription, ribosome biogenesis, translation, nutrient metabolism, and autophagy. In yeast, the protein kinases Target of Rapamycin (TOR) and protein kinase A (PKA) regulate these processes and are thereby the main activators of cell growth in response to nutrients. How TOR, PKA, and their corresponding signaling pathways are coordinated to control the same cellular processes is not understood. Quantitative analysis of the rapamycin-sensitive phosphoproteome combined with targeted analysis of PKA substrates suggests that TOR complex 1 (TORC1) activates PKA but only toward a subset of substrates. Furthermore, we show that TORC1 signaling impinges on BCY1, the negative regulatory subunit of PKA. Inhibition of TORC1 with rapamycin leads to BCY1 phosphorylation on several sites including T129. Phosphorylation of BCY1 T129 results in BCY1 activation and inhibition of PKA. TORC1 inhibits BCY1 T129 phosphorylation by phosphorylating and activating the S6K homolog SCH9 that in turn inhibits the MAP kinase MPK1. MPK1 phosphorylates BCY1 T129 directly. Thus, TORC1 activates PKA toward some substrates by preventing MPK1-mediated activation of BCY1.

INTRODUCTION

Cells regulate their growth in response to nutrients. To achieve this growth control, cells sense and transduce nutrient signals to coordinate several processes including transcription, ribosome biogenesis, translation, nutrient transport and metabolism, and cell morphogenesis and autophagy. In Saccharomyces cerevisiae, the TOR (Target of Rapamycin) and cAMP-dependent protein kinase A (PKA) signaling pathways are the two major pathways that transduce nutrient signals to regulate cell growth (De Virgilio and Loewith, 2006; Santangelo, 2006; Soulard et al., 2009). TOR is found in two highly conserved and functionally distinct complexes corresponding to two effector signaling branches (Wullschleger et al., 2006). Rapamycin-sensitive TOR Complex 1 (TORC1) mediates temporal control of cell growth in response to nutrients by promoting anabolic processes such as translation and ribosomal protein (RP) gene expression and by antagonizing catabolic processes such as autophagy, ubiquitin-dependent protein degradation, and mRNA degradation (Crespo and Hall, 2002; Loewer et al., 2002; Reinke et al., 2004; De Virgilio and Loewith, 2006). In addition, TORC1 regulates lifespan (Kaeberlein et al., 2005). Rapamycin-insensitive TOR Complex 2 (TORC2) mediates spatial control of cell growth by regulating actin cytoskeleton dynamics, ceramide metabolism, and cell wall integrity (De Virgilio and Loewith, 2006; Aronova et al., 2008; Cybulski and Hall, 2009).

PKA in yeast is part of the RAS-cAMP signaling cascade that controls various growth-related processes in response to glucose (Santangelo, 2006). Like TORC1, the PKA pathway regulates translation, ribosome biogenesis, autophagy, stress responses, glucose metabolism, and lifespan (Santangelo, 2006). The PKA catalytic subunit is encoded by the three homologous and partly redundant genes TPK1, TPK2, and TPK3. The PKA regulatory subunit that controls PKA in response to cAMP is encoded by BCY1 (Cannon and Tatchell, 1987; Toda et al., 1987a,b). In the absence of glucose (i.e., a fermentable carbon source), two BCY1s bind two TPKs to form a catalytically inactive heterotetrameric complex. In the presence of glucose, adenylate cyclase is activated and produces cAMP from ATP. cAMP in turn activates PKA by binding BCY1 and releasing it from TPK (Johnson et al., 1987; Santangelo, 2006). Furthermore, both TPK1 and BCY1 shuttle between the cytoplasm and the nucleus in growing cells, with BCY1 mainly in the nucleus and TPK1 primarily in the cytoplasm (Griffioen et al., 2000, 2001; Schmelzle et al., 2004).

TORC1 and PKA regulate common target proteins to activate or inhibit the same biological processes. For example, both TORC1 and PKA regulate the nuclear localization of SFP1 and CRF1, two transcription cofactors involved in RP gene expression (Jorgensen et al., 2004; Marion et al., 2004; Martin et al., 2004; Schwalder et al., 2004; Wade et al., 2004). Similarly, the stress-inducible transcription factors MSN2...
and MSN4 are dephosphorylated and rapidly accumulate in the nucleus upon TORC1 or PKA inhibition (Gorner et al., 1998; Beck and Hall, 1999). Inhibition of either TORC1 or PKA also leads to the dephosphorylation, nuclear accumulation, and activation of MAF1, a repressor of RNA polymerase III (Moir et al., 2006; Huber et al., 2009; Lee et al., 2009). Seemingly conflicting models have been proposed to account for the overlapping regulation by TORC1 and PKA. According to one model, TORC1 and PKA are in distinct but parallel pathways that converge on common target proteins or processes. For example, TORC1 and PKA independently regulate MSN2 and ATG13 phosphorylation (Santhanam or processes. For example, TORC1 and PKA independently account for the overlapping regulation by TORC1 and PKA. 2009). Seemingly conflicting models have been proposed to deficiency, whereas down-regulation of the PKA pathway tion of the RAS-cAMP-PKA pathway suppresses a TORC1 kinases in the same signaling pathway. First, hyperactiva-
suggest that TORC1 is an activator of PKA, placing the two controls RP gene expression via PKA (Martin 2004; Zurita-Martinez and Cardenas, 2005). Second, TORC1 controls RP gene expression via PKA (Martin et al., 2004; Schmelzle et al., 2004). Third, the AGC kinase S9CH, which is a direct substrate of TORC1, was initially identified as a multicopy suppressor of mutations that reduce PKA activity (Toda et al., 1988; Urban et al., 2007). Fourth, inactivation of TORC1 by rapamycin causes a rapid accumulation of the PKA catalytic subunit TPK1 in the nucleus (Schmelzle et al., 2004). All together, the above findings are inconsistent with a single model to explain the common regulation by TORC1 and PKA.

The cell wall integrity pathway consists of the RH01-PKC1-BCK1-MK1/MK2/MPK1 signaling cascade. This pathway allows yeast cells to adapt their growth and shape in response to cell wall stress (Levin, 2005). Recently, several reports have linked the cell wall integrity pathway to both TORC1 and PKA signaling. For example, inactivation of TORC1 leads to the phosphorylation and activation of the mitogen-activated protein (MAP) kinase MPK1, and several components of the cell wall integrity pathway show genetic interactions with components of the PKA pathway (Verna et al., 1997; Krause and Gray, 2002; Torres et al., 2002; Park et al., 2005; Kuranda et al., 2006). However, a molecular link between TORC1 and PKA via the cell wall integrity pathway is unknown.

To better understand the relationship between TORC1 and PKA, we further investigated the effect of TORC1 inj-
bion on PKA. We observed, by large-scale quantitative phosphoproteome analysis and targeted experiments, that a distinct subset of PKA target sites become dephosphorylated upon rapamycin treatment. To investigate the mechanism by which TORC1 controls PKA, we focused on the PKA regulatory subunit BCK1. TORC1 regulates PKA by inhibiting phosphorylation of many sites in BCK1 between a dimerization domain and the CAMP-binding domain. TORC1 inhibits BCK1 phosphorylation via S9CH and the MAP kinase MPK1. Thus, we define a signaling cascade in which TORC1 is upstream of PKA toward at least some substrates.

### MATERIALS AND METHODS

#### Strains, Plasmids, Media, and Genetic Manipulations

The S. cerevisiae strains and plasmids used in this study are listed in Supplementary Tables 1 and 2, respectively. All strains from our laboratory are isogenic with TB50. Yeast manipulations, including cell cultures, sporulation, tetrad dissections, and genetic techniques, were carried out essentially as described by Guthrie and Fink (1991). The media were YPD (1% yeast extract, 1% peptone, 2% dextrose, plus 2% agar for solid media) and minimal synthetic medium (SD; yeast nitrogen base at 6.7 g/l, 2% dextrose, relevant amino acids and 2% agar for plates). VP medium was used for the glucose depletion experiment. SIDS in YPD was 0.01%. Cells were treated with rapamycin at 200 ng/ml final concentration (added from a 2 mg/ml stock solution in 90% ethanol). Tween20 at 5 mM for 30 min (from 250 mM stock solution in water). Before 8-Bromo-cAMP treatment, cells were centrifuged and resuspended in 5 ml of the required medium. In most experiments, yeast strains carrying a plasmid were preincubated in SD medium lacking the corresponding amino acids for plasmid maintenance and subsequently diluted into YPD medium. Cells were then grown for 4-5 h (to OD600 about 0.8) before treatment. For SILAC labeling, yeast cells were grown in SD medium containing 13C6-arginine and 13C6,15N2-
tyrosine (Cambridge Isotope Laboratories, Andover, MA). Transformations of S. cerevisiae cells were ac-
cording to the lithium acetate method with single-strand carrier DNA and dimethyl sulfoxide (DMSO; Hill et al., 1991). All deletion and genomically tagged strains were constructed by PCR-based gene targeting (Wach et al., 1994). One-step site directed mutagenesis was performed as described previ-
ously (Zhang et al., 2008).

#### Fluorescence Microscopy

Fluorescence microscopy and indirect immunofluorescence on whole fixed cells was performed as described previously (Schmelzle et al., 2004).

#### Protein Extraction, Immunoprecipitation, Western Blotting, and Phosphatase Treatment

Protein extracts were prepared from exponentially growing cells. At least 25 OD cell culture were broken in a bead beater in lysis buffer (PBS containing 0.5% Tween 20 and 10% glycerol) containing 1× Roche protease inhibitor cocktail, 1 mM PMSF, and phosphatase inhibitors (10 mM NaF, 10 mM Na3VO4, 10 mM p-nitrophenyl phosphate, 10 mM sodium pyrophosphate, and 10 mM β-glyc-
epropyl)lactam, hemagglutinin (HA), -MYC, or tandem affinity purification (TAP)-tagged proteins were immunoprecipitated from cell proteins in extracts coupled to anti-HA antibody (12CA2), protein G-Sepharose beads or to anti-MYC antibody (19G10.2, or human IgG-Sepharose beads (GE Healthcare, Waukesha, WI), respectively. For the phosphatase experiment, beads were further washed with phosphatase buffer (50 mM Tris-Cl, pH 7.5, 1 mM MgCl2), resuspended in 100 µl phosphatase buffer, and incubated for 10 min at 30°C. Twenty units of calf intestine alkaline phosphatase was added, and the reaction was incubated for 15 min at 30°C. For the gel-shift assay, the acrylamide-bisacrylamide ratio for SDS-PAGE was changed to 17:1. The primary antibodies for Western blotting were as follows: anti-HA (mouse monoclonal, 12CA2), anti-MYC (mouse monoclonal, 19G10.2), anti-protein A (rabbit polyclonal, Sigma-Aldrich, St. Louis, MO), anti-BCK1 (mouse polyclonal, Bck1 [y919] 676-779, Santa Cruz Biotechnology, Santa Cruz, CA), anti-Rsk2 (rabbit polyclonal phosho-
Ser/Thr) PKA substrate antibody no. 9621, Cell Signaling, Beverly, MA), anti-Rsk2 (phospho-PKA Substrate [RRXS/T], 100G7E), rabbit mAb no. 9624, Cell Signaling, anti-MPK1 (goat polyclonal, MPK1 [Y-C20] sc-6803, Santa Cruz Biotechnology, anti-phospho MPK1 (rabbit polyclonal, phospho-
p44/42 MAPK [Thr202/Tyr204] antibody no. 9101, Cell Signaling). The phosphorylated residues are underlined.

#### Identification of Phosphorylation Sites in BCK1

Wild-type TB50a cells or cells expressing N-terminally H- tagged BCK1 (SA094) were grown in 500 ml YPD to OD600 of 1 and treated with rapamycin (200 ng/ml) or drug vehicle for 90 min. Cells were broken with glass beads with RIPA buffer (25 mM Tris-Cl, pH 7.5, 150 mM NaCl, 1% Nonidet NP-40, 1% Na-deoxycholate) supplemented with 1× Roche protease inhibitor cocktail and phosphatase inhibitors (10 mM NaF, 0.2 µM okadaic acid, and 20 nM calyculin A). HA-tagged BCK1 was immunoprecipitated from 40 mg of total protein extract with 1 µl of monoclonal anti-HA antibody (HA.11; Covance, Princeton, NJ) at 4°C for 18 h followed by incubation with 100 µl of Dynabeads protein G (Invitrogen, Carlsbad, CA) for 4 h at 4°C. The beads were washed and HA-BCK1 was eluted from the beads with 10 µl 3 M urea, and 20 mM DTT for 10 min at room temperature. HA-BCK1 was digested with trypsin for 10 h at 37°C. Proteolysis was stopped with 8.4 µl acetic acid, and the peptides were dried in a Speed Vac. Phosphopeptides were enriched with TiO2-magnetic beads (Perkin Elmer-Cetus, Waltham, MA) according to the manufac-
turer's instructions. The final peptides were analyzed by capillary liquid chromatography tandem MS (LC/MS/MS) using a 300SB C-18 column (0.3×50 mm; Agilent Technologies, Basel, Switzerland) connected on line to an LTQ-Orbitrap hybrid instrument (Thermo Finnigan, San Jose, CA; see below).

#### Glycogen Staining

Staining of intracellular glycogen was performed with iodine vapor as pre-
iously described (Barbet et al., 1996).

#### MPK1 Kinase Assay

Yeast cells expressing HA-tagged MPK1 were grown in 500 ml YPD to an OD600 of 1 and then treated for 30 min with rapamycin or drug vehicle. Protein extraction, immunoprecipitation, and in vitro kinase assays were
done as previously describe with slight modifications (Watanabe et al., 1997). Modified RIPA buffer (25 mM Tris-Cl, pH 7.5, 150 mM NaCl, 1% Nonidet NP-40, 1% Na-deoxycholate) was used to break the cells, and 20 mg of total protein extract was used for the immunoprecipitation. The TBSSa wild-type strain was used as mock control. A fraction of total lysate (20 µg) was kept to check MPK1-HA expression and phosphorylation on Western blots.

Zymolyase Sensitivity Assay
Zymolyase sensitivity was tested as reported (Ho et al., 2005).

Phosphoproteome Analysis: SILAC Labeling and Protein Extraction
Two 200-ml cultures of Y2P2 cells (derived from TBSSa) were grown at 30°C in SD medium supplemented with either 30 mg/l 13C2-arginine and 13C2-lysine (“light” culture) or 13C6-lysine (“heavy” culture) to an optical density (600 nm) of ~0.7. The heavy culture was treated for 15 min with 200 nM rapamycin, whereas the light culture was treated with the vehicle for 15 min. To produce reliable quantitative data, four biological replicates were performed, always starting from a single yeast clone. In one of the four experiments the labeling was swapped to check that the labeling influences neither protein expression nor phosphorylation. Alkylation was done in 1 ml 50 mM iodoacetamide (in 50 mM NH4HCO3) in dark for 30 min. After the gel pieces were washed three times with 1 ml 50% acetonitrile/50 mM NH4HCO3, dehydrated with 500 µl 100% DMSO). Total protein extraction from either light or heavy cultures was performed by bead-beating as described above. The lysates were cleaned at 15,000 g for 10 min at 4°C. Protein concentrations in the extracts were measured with the bicinchoninic acid assay (BCA, Sigma-Aldrich). About 2.5 µg of light- or heavy-labeled protein extracts were mixed and after addition of 6× sample buffer were incubated at 95°C for 5 min and subjected to preparative electrophoresis.

Phosphoproteome Analysis: Protein Fractionation and In-Gel Digestion
The mixed protein extracts were separated on a preparative 10% SDS slab gel. For phosphopeptide enrichment, the gels were stained with SimplyBlue SafeStain (Invitrogen). The gel was then sliced horizontally into 16 regions, and the individual slices were further diced into 1-mm3 cubes. The gel pieces were destained overnight in 1 ml 50% acetonitrile/50 mM NH4HCO3, dehydrated with 500 µl 100% acetonitrile, and dried in a speed-vac. The proteins were in-gel digested in 1 ml 50 mM NH4HCO3 containing 10 µl DTT at 55°C for 60 min. Alkylation was done in 1 ml 50 mM iodoacetamide (in 50 mM NH4HCO3) in dark for 30 min. After the gel pieces were washed three times with 1 ml 50% acetonitrile/50 mM NH4HCO3, they were dehydrated with 500 µl 100% acetonitrile, dried in a speed-vac, and then rehydrated on ice for 1 h in 1 ml 50 mM NH4HCO3 containing 10 µl trypsin (Sigma). Digestion was carried out overnight at 37°C. Supernatants were collected in fresh tubes and the gel pieces were extracted three times with 50% acetonitrile/50 mM ammonium bicarbonate, followed by a final extraction with 100% acetonitrile. The volume of the individual gel pieces was diluted in a speed-vac to ~10 µl to which 200 µl 1% acetic acid was added. A small drop was spotted onto pH paper, and if necessary the pH was adjusted to 2.0–2.5 with 10% acetic acid.

Phosphoproteome Analysis: Peptide Desalting and Phosphopeptide Enrichment
For phosphopeptide enrichment, the digests were desalted on C18 MacroSpin column (500 µl packed resin, The Nest Group, Southborough, MA) according to the manufacturer’s instructions. The peptides were eluted from the cartridge with 600 µl 60% acetonitrile/1% acetic acid. The eluates were speed-vac dried to ~10 µl to which 90 µl IMAC buffer (30% acetonitrile/250 mM NaCl/0.1% trifluoroacetic acid) was added. One microliter of each digest was diluted with 200 µl 2% acetonitrile/0.1% acetic acid, and 10 µl was analyzed by LC/MS/MS for expression analysis.

For phosphopeptide enrichment, 40 µl IMAC slurry (PHOS-Select, Sigma-Aldrich) was washed five times with 1 ml IMAC buffer and then incubated with 100 µl packed resin, The Nest Group, Southborough, MA) according to the manufacturer’s instructions. The peptides were eluted from the cartridge with 600 µl 60% acetonitrile/1% acetic acid. The eluates were speed-vac dried to ~10 µl, and the phosphopeptides were diluted with 40 µl 2% acetonitrile/0.1% formic acid for LC/MS/MS analysis.

Phosphoproteome Analysis: LC-MS/MS Analysis
LC-MS/MS analysis was performed on an LTQ-Orbitrap hybrid instrument (Thermo Scientific). Ten microliters of IMAC eluate was injected with an autosampler (CTC Analytics, Agilent Technologies, Basel, Switzerland) onto a C18 trapping column (300SB C-18 0.3 × 50 mm, Agilent Technologies) that was connected to a separation column (0.1 mm × 10 cm) packed with Magic 300 Å C18 reverse-phase material (5-µm particle size, Michrom Bioresources, Auburn, CA). A linear 80-min gradient from 2 to 50% solvent B (80% aceto- nitrile/0.1% acetic acid) in solvent A (2% acetonitrile/0.1% acetic acid) was delivered with a Rheos 2200 pump (Flux Instruments, Basel, Switzerland) at a flow rate of 100 µl/min. A precolumn split was used to reduce the flow to ~300 nI/min. The eluting peptides were ionized at 1.7 kV.

The LTQ-Orbitrap was operated in data-dependent mode. A survey scan between m/z 375 and 1600 was acquired in profile mode at 60,000 resolution, and the 10 most abundant ions were then selected for fragmentation in the LTQ part of the instrument at normalized collision energy of 35%. To facilitate fragmentation of phosphopeptides, a CID scan was performed by multistage activation of highly charged ions without--fragmentation, and previously selected ions were dynamically excluded from fragmentation. For phosphopeptide enrichment, 40 µl of the regulated hits we found many proteins that were already known to be regulated PKA through MPK1.

RESULTS
PKA Sites Are Primary Targets for TORC1-dependent Phosphorylation
Although it is known that TORC1 regulates many cellular processes, the molecular mechanisms by which TORC1 signals to these diverse processes are often not well under-
stood. In particular, very few substrates of either TORC1 or its direct effectors such as the AGC kinase SCH9 are known. To identify proteins whose phosphorylation changes in a TORC1-dependent manner, we performed unbiased quantitative phosphoproteomic analysis by stable isotope labeling with amino acids in cell culture (SILAC; Ong et al., 2002). Extracts from rapamycin-treated untreated yeast cells were separated by preparative SDS gel electrophoresis, phosphopeptides were enriched by IMAC, and the resulting phosphopeptide pools were analyzed by LC-MS/MS (Figure 1A). Unique phosphopeptides (n/H11005 2487) and unique phosphorylation sites (n/H11005 2607), corresponding to 972 phosphoproteins, were identified and quantified (Figure 1B and Supplementary Table 3). Our phosphoproteome compares favorably to previously published yeast phosphoproteomes (Gruhler et al., 2005; Li et al., 2007; Wilson-Grady et al., 2008) and includes both high- and low-abundance phosphoproteins (Supplementary Figure 1B; Ghaemmaghami et al., 2003). Of the 972 phosphoproteins identified (Supplementary Table 3), 78 were significantly hyperphosphorylated, and 55 were hypophosphorylated upon rapamycin treatment (Supplementary Tables 4 and 5, respectively). To accurately quantify the changes in phosphorylation, the fold change in phosphorylation was systematically compared with the fold change in expression for each protein (Supplementary Tables 6–8). Analysis of the data revealed that many rapamycin-regulated phosphoproteins had been already genetically or biochemically linked to TORC1 signaling (Supplementary Figure 1, C and D), providing further validation of our phosphoproteome. During the preparation of this manuscript, another study describing the rapamycin-regulated phosphoproteome in yeast was published (Huber et al., 2009). A comparison of the two studies revealed surprisingly little overlap. Although the total number of rapamycin-regulated phosphoproteins was very similar in the two studies (133 vs. 129), only 29 proteins were common to both studies (Supplementary Figure 1, C and D). Thus, the two studies provide different but complementary rapamycin-regulated phosphoproteomes.

To determine if TORC1 controls phosphorylation of specific motifs, we analyzed the sequences surrounding the rapamycin-regulated phosphosites, with the Motif-X algorithm (Schwartz and Gygi, 2005). For the peptides

Figure 1. Quantitative analysis of the rapamycin-sensitive phosphoproteome by SILAC. (A) Schematic overview of the experimental approach for the identification of TORC1 regulated phosphorylation sites in *S. cerevisiae*. Two yeast cultures (strain YP2) were metabolically labeled with 12C6-14N2-lysine/12C6-arginine (light) or 13C6-15N2-lysine/13C6-arginine (heavy). The heavy culture was treated for 15 min with rapamycin. Extracts were mixed in a 1:1 ratio and separated by preparative SDS-PAGE. The gel was horizontally sliced into 16 sections and in-gel–digested, and phosphopeptides were IMAC-enriched and analyzed in an LTQ-Orbitrap. (B) Merged data from the four experiments revealed 972 phosphoproteins, corresponding to 2487 unique phosphopeptides and 2607 unique phosphosites. (C) Analysis by Motif-X of all regulated phosphopeptides.
whose phosphorylation was down-regulated upon rapamycin treatment, the top scoring target motif was RRxS (the phosphorylated residue is underlined; Figure 1C). This motif was underrepresented in the phosphopeptides whose phosphorylation was up-regulated (Figure 1C). The related motif RxSS appeared in both the up- and down-regulated phosphopeptides (Figures 1C). Finally, the two motifs SP and SxS were also represented, but only in the up-regulated peptides. Examination of the rapamycin-sensitive phosphoproteome presented by Huber et al. (2009) revealed a similar bias toward RRxS sites for down-regulated phosphopeptides (Supplementary Table 9). Thus, RRxS is a primary target motif whose phosphorylation was down-regulated upon rapamycin treatment (Figure 1C). The related motif was underrepresented in the phosphopeptides whose phosphorylation was up-regulated (Figure 1C). The description of the function of the protein is given according to the SGD with adaptation.

#### Table 1. Proteins for which phosphorylation decreased at PKA consensus motif RRxS after rapamycin treatment

<table>
<thead>
<tr>
<th>Protein</th>
<th>Phospho site*</th>
<th>Descriptionb (SGD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRA1</td>
<td>S 56 (0.48 ± 0.16)</td>
<td>Protein involved in negative regulation of transcription of iron regulon genes</td>
</tr>
<tr>
<td>GCN2</td>
<td>S 577 (0.18 ± 0.02)</td>
<td>elf2 kinase regulating translation in response to starvation</td>
</tr>
<tr>
<td>KC51</td>
<td>S 537 (0.42)</td>
<td>Inositol hexakisphosphate (IP6) and inositol heptakisphosphate (IP7) kinase</td>
</tr>
<tr>
<td>KSP1</td>
<td>S 827 (0.27 ± 0.01)</td>
<td>Ser/thr protein kinase required for haploid filamentous growth</td>
</tr>
<tr>
<td></td>
<td>S 883, S 884 (0.11)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S 884 (0.40)</td>
<td></td>
</tr>
<tr>
<td>LHP1</td>
<td>S 19 (0.51 ± 0.13)</td>
<td>RNA-binding protein required for maturation of tRNA and U6 snRNA precursors</td>
</tr>
<tr>
<td>MAF1</td>
<td>S 90 (0.25 ± 0.08)</td>
<td>Negative regulator of RNA polymerase III in response to nutrients and stress</td>
</tr>
<tr>
<td>MKS1</td>
<td>S 209 (0.29)</td>
<td></td>
</tr>
<tr>
<td>SSD1</td>
<td>S 518 (0.43 ± 0.18)</td>
<td>Negative transcriptional regulator involved in Ras-cAMP and lysine biosynthetic pathways, and nitrogen regulation</td>
</tr>
<tr>
<td>VTC2</td>
<td>S 164 (0.56 ± 0.07)</td>
<td>Maintenance of cellular integrity, interacts with components of the TOR pathway</td>
</tr>
<tr>
<td>YJL016W</td>
<td>S 350 (0.50 ± 0.02)</td>
<td>Putative protein of unknown function</td>
</tr>
</tbody>
</table>

* For each protein the coordinate of the regulated phospho-site and the fold-increase the average ratio (±SD) are given in parentheses. No SD indicates that the phospho-sites were identified in only one experiment.

b The description of the function of the protein is given according to the SGD with adaptation.

TORC1 indeed activates PKA, we performed targeted analyses of individual PKA substrates. In particular, we investigated the effect of rapamycin treatment on the in vivo steady-state phosphorylation of the known or suspected PKA substrates MAF1, YPK3, and KSP1. We probed the phosphorylation of these PKA substrates with an antibody that specifically recognizes a phosphorylated consensus PKA target motif (RRxS/T). This antibody is hereafter referred to anti-RRxS/T.

Consistent with our phosphoproteome analysis and as reported previously, we observed that MAF1 phosphorylation at PKA consensus sites was strongly reduced upon rapamycin treatment (Figure 2A). Although this could suggest that TORC1 activates PKA toward MAF1, this interpretation is complicated by the fact that the TORC1 effector SCH9, an AGC kinase family member like PKA, can also directly phosphorylate PKA sites in MAF1 (Huber et al., 2009; Lee et al., 2009). To further investigate whether TORC1 indeed activates PKA toward MAF1, we used the cell-permeable phosphodiesterase resistant analogue 8-Bromo-cAMP (Verma et al., 1988) to activate PKA in the absence of TORC1 and SCH9 activity. As expected, PKA inactivation upon glucose starvation resulted in a strong reduction in MAF1 phosphorylation at PKA sites, and addition of 8-Br-cAMP to glucose-starved cells restored MAF1 phosphorylation at PKA sites (Figure 2B and Supplementary Figure 2A). Treatment of cells with 8-Br-cAMP also counteracted the inhibitory effect of rapamycin on the phosphorylation of MAF1 at PKA sites (Figure 2C and Supplementary Figure 2B). These data suggest that TORC1 indeed activates PKA (in addition to SCH9) toward MAF1.

We also examined phosphorylation of PKA sites in YPK3 and KSP1. YPK3 is an AGC kinase that is phosphorylated by PKA in vitro (Budovskaya et al., 2005; Ptacek et al., 2005). KSP1 is a serine/threonine kinase required during filamentous growth in response to nutrient limitation (Bharucha et al., 2008). KSP1 localization is influenced by PKA, and it is also a PKA substrate in vitro (Ptacek et al., 2005; Bharucha et al., 2008). Similar to MAF1 and again consistent with our phosphoproteome analysis, phosphorylation of both KSP1 and YPK3 at consensus PKA site(s) decreased upon rapamycin treatment (Figure 2A). Similar to MAF1, but to a lesser extent, activation of PKA with 8-Br-cAMP counter-
To obtain insight into the molecular mechanism by which TORC1 might signal to PKA, we focused on BCY1. After confirming earlier observations that physiologically relevant TPK1–BCY1 interaction cannot be monitored in vitro or in vivo (Supplementary Figure 4 and data not shown), we examined BCY1 phosphorylation. As shown previously, BCY1 is highly phosphorylated upon glucose starvation, and this phosphorylation appears to be important for PKA nuclear localization, suggesting that BCY1 phosphorylation leads to BCY1 activation and PKA inactivation (Werner-Washburne et al., 1991; Griffioen et al., 2001). We observed that rapamycin treatment resulted in a slower migrating, phosphatase-sensitive form of BCY1 (Figure 3A), suggesting that TORC1 might signal to PKA via inhibition of BCY1 phosphorylation.

To investigate further whether TORC1 signals to PKA via BCY1 phosphorylation, we identified the phosphorylation sites in HA-tagged BCY1 isolated from rapamycin-treated and untreated cells (see Materials and Methods). In total, 17 phosphorylation sites were identified (Figure 3B and Supplementary Table 10). The 17 sites fell into three clusters, all in the N-terminal part of BCY1 (Figure 3B). The first cluster was S68, S70, S74, S77, S79, S81, S83, and S84. This cluster of phosphorylation sites, termed cluster II (CII), was described previously and was shown to be important for BCY1 function (Griffioen et al., 2001). The second cluster of phosphorylated residues consisted of T144, S147, T150, and T160. This cluster falls within or near the so-called autoinhibitory domain where the catalytic subunit of PKA “auto-phosphorylates” the highly conserved S145 (RRxS145) to inhibit BCY1 (Kuret et al., 1988; Werner-Washburne et al., 1991). The third cluster of phosphorylated residues included T129, S130, and T131. This cluster was novel and was termed cluster III (CIII). We note that, in addition to the above 17 phosphorylation sites, we also detected phosphorylation in an extreme N-terminal, HA-containing fragment of BCY1, mainly in CIII. This phosphorylation is presumably related to the previously identified cluster I (CII; Griffioen et al., 2001).

Consistent with the above observation that rapamycin treatment induced BCY1 phosphorylation as measured by altered electrophoretic mobility (Figure 3A), we detected more BCY1 phosphopeptides in extracts from rapamycin-treated cells compared with untreated cells. In particular, sites in CIII (and to a lesser extend in CII) were hyperphosphorylated in response to rapamycin (Supplementary Table 10). These results suggest that there are many TORC1-sensitive phosphorylation sites in BCY1, mainly in CIII. This may explain why previous studies, which did not examine rapamycin-treated cells, did not detect the phosphorylation sites in CIII.

Figure 2. Influence of TORC1 inhibition on PKA substrate phosphorylation in vivo. (A) Rapamycin affects the phosphorylation state of different PKA substrates. Yeast strains expressing MAF1-HA (SA148), YPK3-HA (SA216), or KSP1-HA (SA219) were grown to exponential phase and treated for the indicated time with 200 ng/ml rapamycin (+) or drug vehicle (−). After protein extraction each tagged protein was immunoprecipitated and analyzed by Western blot for total protein (tot) with anti-HA antibody and for phosphorylation at PKA sites (Phos/tot (%)). In total, 17 phosphorylation sites were identified (Figure 3B and Supplementary Table 10). The 17 sites fell into three clusters, all in the N-terminal part of BCY1 (Figure 3B). The first cluster was S68, S70, S74, S77, S79, S81, S83, and S84. This cluster of phosphorylation sites, termed cluster II (CII), was described previously and was shown to be important for BCY1 function (Griffioen et al., 2001). The second cluster of phosphorylated residues consisted of T144, S147, T150, and T160. This cluster falls within or near the so-called autoinhibitory domain where the catalytic subunit of PKA “auto-phosphorylates” the highly conserved S145 (RRxS145) to inhibit BCY1 (Kuret et al., 1988; Werner-Washburne et al., 1991). The third cluster of phosphorylated residues included T129, S130, and T131. This cluster was novel and was termed cluster III (CIII). We note that, in addition to the above 17 phosphorylation sites, we also detected phosphorylation in an extreme N-terminal, HA-containing fragment of BCY1, mainly in CIII. This phosphorylation is presumably related to the previously identified cluster I (CII; Griffioen et al., 2001).

Consistent with the above observation that rapamycin treatment induced BCY1 phosphorylation as measured by altered electrophoretic mobility (Figure 3A), we detected more BCY1 phosphopeptides in extracts from rapamycin-treated cells compared with untreated cells. In particular, sites in CIII (and to a lesser extend in CII) were hyperphosphorylated in response to rapamycin (Supplementary Table 10). These results suggest that there are many TORC1-sensitive phosphorylation sites in BCY1, mainly in CIII. This may explain why previous studies, which did not examine rapamycin-treated cells, did not detect the phosphorylation sites in CIII.
TORC1 Regulates PKA through MPK1

Figure 4. BCY1 T129 phosphorylation after rapamycin treatment lowers PKA activity. (A) The yeast strains expressing wild-type (WT) or different mutants of HA-BCY1 at threonine 129 (T129A, T129D) were grown to exponential phase and treated or not with rapamycin (200 ng/ml) for 45 min. After total protein extraction, HA-BCY1 was immunoprecipitated. Total BCY1 and phosphorylated BCY1 at T144 were followed as in D. (B) The signal obtained with anti-RRxS/T antibody for BCY1-P (T129) and anti-RRxS/T antibody for BCY1-P (S145), respectively. In parallel, total (MPK1) and activated MPK1 (MPK1-P) were visualized by Western blot on the total cell lysates used for the HA-BCY1 IPs (panel total). (C) Glycogen accumulation was tested by iodine staining after 5-h rapamycin or drug vehicle treatment of yeast strains expressing the wild-type (BCY1 = SA094) and mutated form of BCY1 at threonine 129 (T129A and T129D).

S145 is part of an RRxS/T motif, whereas S74, S83, and T129 are part of RxxS/T sequences. To confirm that the effect of rapamycin on BCY1 phosphorylation was indeed due to inhibition of TORC1, we examined BCY1 phosphorylation in TOR mutant strains. In a TOR1 deletion strain, BCY1 was hyperphosphorylated at the RxxS/T site(s). Conversely, this site(s) remained insensitive to rapamycin in the rapamycin resistant (TOR1) TOR2-I strain (Figure 3D). Thus, the effect of rapamycin on phosphorylation of BCY1 at the RxxS/T motif was due to TORC1 inhibition. Furthermore, phosphorylation of the RxxS/T motif in BCY1 increased with increasing time of rapamycin treatment, reaching a level after 2 h comparable to that of glucose starvation for 2 h (Figure 3E). Taken together, the above results suggest that TORC1 (and glucose) inhibits phosphorylation of multiple sites in BCY1, some if not all of which are part of an RxxS/T motif (e.g., S74, S83, and T129).

TORC1-sensitive BCY1 T129 Phosphorylation Inactivates PKA

To determine the effect of TORC1-sensitive BCY1 phosphorylation on PKA function, we mutated individually S74, S83,
and T129 to alanine or to phosphomimetic aspartate. Each mutant was then examined for rapamycin sensitivity and rapamycin-induced glycogen accumulation, two phenotypes that reflect PKA inactivity (Schmelzle et al., 2004; Zúrita-Martínez and Cardenas, 2005). We note that mutation of T129 reduced recognition by anti-RxxS/T, whereas mutation of S74 and S83 had no effect on recognition by this antibody (Figure 4A and data not shown). Thus, the region containing T129 was the main epitope in BCY1 recognized by anti-RxxS/T (Figure 4A). The phosphomimetic mutation BCY1-T129D conferred increased sensitivity to rapamycin and enhanced accumulation of glycogen upon TORC1 inhibition (Figure 4, B and C), suggesting that the BCY1-T129D protein is a constitutive inhibitor of PKA and that T129 phosphorylation activates BCY1 to inhibit PKA (at least toward some substrates). However, BCY1-T129A behaved like wild-type BCY1, as determined by rapamycin sensitivity and glycogen accumulation. Furthermore, mutation of T129 to alanine or aspartate did not affect nuclear localization of BCY1, rapamycin-dependent nuclear localization of TPK1, BCY1-TPK1 interaction, or PKA-dependent phosphorylation of MAF1 (data not shown). These results suggest that phosphorylation of a site(s) other than T129 can also activate BCY1. This other site is likely not S74, S83, or T131, as mutation of any one of these sites had no phenotypic consequence in our assays (data not shown). Taken together, our results suggest that TORC1 controls PKA (at least toward some substrates) by inhibiting phosphorylation of T129 and possibly other so far unknown sites in BCY1.

**TORC1 Controls PKA via SCH9**

As reported recently, TORC1 directly phosphorylates and activates the serine/threonine kinase and 56K homolog SCH9 (Urban et al., 2007). Several reports have suggested that SCH9 is linked to PKA signaling. For example, the SCH9 gene was initially identified as a multicopy suppressor of mutations that reduce PKA activity, and SCH9 prevents glycogen accumulation and activates ribosomal protein gene expression similar to PKA (Toda et al., 1988; Urban et al., 2007). To determine whether TORC1 controls BCY1 (and PKA) via SCH9, we examined BCY1 T129 phosphorylation in SCH9-deleted cells. As shown in Figure 5A, BCY1 was hyperphosphorylated at T129 in the sch9 deletion mutant, even when TORC1 was active (absence of rapamycin). Consistent with this observation, PKA-dependent phosphorylation of MAF1 was decreased in the sch9 mutant (Figure 5B). Cells deleted for SCH9 also displayed constitutive nuclear localization of the catalytic subunit TPK1 (Figure 5C). sch9Δ/Δ mutant cells, in which all residues required for SCH9 phosphorylation and activation by TORC1 are mutated to alanine, also displayed constitutive nuclear accumulation of TPK1 (Figure 5C). Furthermore, in normal growth conditions, sch9 deletion and sch9Δ/Δ mutants displayed constitutive nuclear accumulation of the PKA target YAK1 and similar to what is observed in wild-type cells treated with rapamycin (data not shown and Schmelzle et al., 2004). Together, these observations suggest that TORC1 inhibits BCY1 T129 phosphorylation and TPK1 nuclear accumulation through SCH9.

**The MAP Kinase MPK1 Directly Phosphorylates BCY1 upon TORC1 Inhibition**

The results described above suggested that, upon TORC1 inhibition, BCY1 is phosphorylated on T129 and thereby activated. What is the T129 kinase that is inhibited by TORC1? Two serine/threonine kinases, YAK1 and MCK1, have been shown to mediate BCY1 phosphorylation upon nutrient limitation or other stress (Werner-Washburne et al., 1991; Griffioen et al., 2001). YAK1 is activated upon TORC1 inhibition and antagonizes the PKA pathway (Zappacosta et al., 2002; Martin et al., 2004; Deminoff et al., 2006). MCK1 is a glycogen synthase kinase 3 (GSK3) homologue involved in meiosis (Neigeborn and Mitchell, 1991; Kassir et al., 2006). In mutants deleted for YAK1 or MCK1, rapamycin-induced phosphorylation of BCY1 T129 was reduced but not abolished (Supplementary Figures 5, A and B). In addition, YAK1 and MCK1 purified from rapamycin-treated or -untreated yeast cells failed to phosphorylate recombinant GST-BCY1 in vitro (data not shown). These findings suggest that YAK1 and MCK1 may affect BCY1 phosphorylation but are not the kinases that directly phosphorylate BCY1 T129 upon TORC1 inhibition.

Next, we examined BCY1 T129 phosphorylation in cells lacking either NPR1 or SLT2/MPK1, two serine/threonine kinases that are activated upon TORC1 inhibition (Schmidt et al., 1998; Krause and Gray, 2002; Torres et al., 2002). NPR1 controls the sorting of several amino acid transporters in

![Figure 5. TORC1 inhibits MPK1 and BCY1 T129 phosphorylation through the AGC kinase SCH9. (A) To follow the influence of SCH9 on BCY1 T129 and MPK1 phosphorylation, the yeast strains SA094 (WT) and SA135 (sch9) expressing HA-BCY1 were grown to exponential phase and treated 45 min with rapamycin (+) or drug vehicle (−) before total protein extraction. HA-BCY1 was immunoprecipitated (IP) and analyzed by Western blot with anti-HA (HA-BCY1) and anti-RxxS/T [BCY1-P (T129)] antibodies (IP panel). Total (MPK1) and activated MPK1 (MPK1-P) were visualized in total cell lysate by Western blot with the corresponding antibodies (panel total). (B) Effect of SCH9 deletion on PKA-dependent phosphorylation of MAF1. The yeast strains SA148 (MAFI-HA SCH9) and SA232 (MAFI-HA sch9) were grown to exponential phase and treated for 30 min with rapamycin (+) or drug vehicle (−) before total protein extraction. MAF1-HA was immunoprecipitated and analyzed by Western blot with anti-HA [MAFI (tot)] and anti-RxxS/T [MAFI-P (PKA)] antibodies. For each condition, the phosphorylation at PKA sites was quantified, normalized against the level of total protein, and expressed as percentage [Phos/tot (%)]. (C) The rapamycin-dependent localization of TPK1-HA (TPK1) was followed by immunofluorescence of yeast strain SA20X carrying a plasmid expressing TPK1-HA (TPK1). The nucleus was observed by DAPI staining (DNA).](image-url)
Figure 6. BCY1 T129 phosphorylation is mediated by activation of the MAP kinase MPK1. (A) Yeast strains wild type (MPK1 = TB50a) or deleted (mpk1 = TS45-1a) for MPK1 and expressing HA-BCY1 from a plasmid (pS137) were treated for 45 min with 200 ng/ml rapamycin (+) or drug vehicle (−). After protein extraction, HA-BCY1 was immunoprecipitated and analyzed by Western blot using anti-HA (HA-BCY1), anti-RRxS/T [BCY1-P (S145)], and anti-RRxS/T (BCY1-P (T129)) antibodies. TB50a was used as a mock control. (B) Total (HA-BCY1) and phospho-BCY1 (BCY1-P) were analyzed as in A after 45-min treatment with rapamycin (200 ng/ml), SDS (0.01%), or drug vehicle of wild-type strain (WT = TB50a) or of a strain expressing an hyperactive form of BCK1 (BCK1-20) from a plasmid (pRS316::BCK1-20; panel II). In parallel, total MPK1 (MPK1) and active phosphorylated MPK1 (P-MPK1) were analyzed by Western blot on the total extracts used for HA-BCY1 IPs with the corresponding antibodies (panel total). (C) In vitro kinase assay. MPK1-HA was immunoprecipitated from the yeast strain TS99-5c treated with rapamycin (+) or drug vehicle (−) for 45 min. The assay was performed as described in Materials and Methods in presence of 1 μg of recombinant GST-BCY1 expressed from E. coli. Total and phosphorylated proteins were visualized by Coomassie staining (Coomassie) and autoradiography (32P), respectively. An aliquot of purified MPK1-HA was conserved for analysis of total (MPK1) and activated MPK1 (MPK1-P) by Western blot as above (WB). The level of BCY1 phosphorylation was quantified by densitometric analysis (below panel 32P). MBP, a commonly used MPK1 in vitro substrate, was used as a positive control (data not shown) (D) Glycogen accumulation was tested by iodine staining after 5-h rapamycin or drug vehicle treatment of yeast strains wild type (WT = SA180) or deleted for MPK1 (mpk1 = SA183), for TOR1 (tor1 = SA181), or for both genes (tor1 mpk1 = SA185). (E) Effect of MPK1 deletion on PKA-dependent phosphorylation of MAF1. Yeast strains containing MAFF-HA and expressing MPK1; strain SA148) or lacking MPK1 (mpk1; strain SA233) were grown to exponential phase and treated for the indicated time with rapamycin or drug vehicle before total protein extraction. MAF1-HA was immunoprecipitated and analyzed by Western blot with anti-HA [MAF1 (tot)] and anti-RRxS/T (MAF1-P (PKA)) antibodies. MAF1 phosphorylation at PKA sites was quantified as described in Figure 1 [Phos/tot (%)]. (F) Effect of MPK1 deletion on PKA-dependent phosphorylation of YPK3. Yeast strains containing YPK3-HA and expressing MPK1; strain SA234) or lacking MPK1 (mpk1; SA235) were analyzed as in E except that the cells were treated with rapamycin (+) or drug vehicle (−) for 45 min.

response to nutrients (Schmidt et al., 1998). Deletion of NPR1 had no effect on T129 phosphorylation upon rapamycin treatment (Supplementary Figure 5C). The MAP kinase MPK1 is part of the PKC1-BCK1-MPK1 cascade that regulates cell wall integrity and entry into quiescence in response to stress (Levin, 2005). Deletion of MPK1 completely abolished rapamycin-induced T129 phosphorylation (Figure 6A). To further investigate a role of MPK1 in BCY1 phosphorylation, we examined T129 phosphorylation in response to conditions that activate the cell wall integrity pathway. We activated the cell wall integrity pathway with a genetically activated MAPKKK (BCK1-20 mutation) or with chemicals such as SDS, Congo Red, and sodium orthovanadate that disrupt the cell wall. MPK1 activation was monitored with an antibody that recognizes phosphorylated p44/42 ERK MAPK but that also recognizes phosphorylated MPK1 in yeast (Verna et al., 1997; Delley and Hall, 1999). Like rapamycin treatment (Krause and Gray, 2002; Torres et al., 2002 and Figure 6B), activation of the cell wall integrity pathway stimulated both MPK1 and BCY1 T129 phosphorylation (Figure 6B and Supplementary Figure 6C). We next examined whether MPK1 immunopurified from rapamycin-treated cells phosphorylates recombinant BCY1 in vitro. As shown in Figure 6C, MPK1 purified from rapamycin-treated cells indeed phosphorylated recombinant BCY1. Recombinant BCY1 in which T129 was mutated to alanine was less phosphorylated compared with wild-type BCY1 (Supplementary Figure 6E). These results suggest that MPK1 directly phosphorylates BCY1 T129 upon TORC1 inhibition in vivo.

To investigate the physiological significance of MPK1-dependent BCY1 phosphorylation upon TORC1 inhibition, we examined rapamycin-induced glycogen accumulation and PKA-dependent phosphorylation of MAF1 and YPK3 in cells lacking MPK1. Rapamycin-treated, MPK1-deleted cells accumulated less glycogen than wild-type cells (Figure 6D). A role for MPK1 in TORC1-sensitive glycogen accumulation
was confirmed by the observation that MPK1 deletion abolished the hyperaccumulation of glycogen provoked by a TOR1 deletion (Figure 6D). Conversely, and similar to rapamycin treatment, activation of the cell wall integrity pathway by SDS or caffeine (Levin, 2005) stimulated glycogen accumulation (Supplementary Figure 6D). Furthermore, in MPK1-deleted cells, phosphorylation of PKA sites in MAF1 and YPK3 was increased and rapamycin-induced dephosphorylation of these sites was reduced (Figure 6, E and F). Thus, MPK1 appears to have a physiological role in TORC1-mediated control of PKA.

Is SCH9 upstream of MPK1 in controlling phosphorylation of BCY1 T129, as expected from the above findings? MPK1 was hyperphosphorylated in sch9 deletion and sch9Δ mutants, even when TORC1 was active (absence of rapamycin; Figure 5A and Supplementary Figure 6A). Furthermore, sch9 deletion mutants displayed enhanced resistance to zymolyase, a cell wall–damaging agent (Supplementary Figure 6B), suggesting that the cell wall integrity pathway was hyperactive in cells lacking SCH9. Thus, SCH9 appears to negatively control both BCY1 T129 phosphorylation and MPK1 activity, suggesting that SCH9 is indeed upstream of MPK1 in controlling BCY1 T129 phosphorylation. The above results taken together suggest that TORC1-SCH9 signaling activates PKA (at least toward some substrates) by inhibiting MPK1 direct phosphorylation of BCY1 T129.

**DISCUSSION**

To obtain insight into the shared regulation by PKA and TORC1 (see Introduction), we investigated the TORC1 phosphoproteome. This revealed that PKA phosphorylation sites are a primary target of TORC1, suggesting that TORC1 is an upstream activator of PKA. However, many PKA sites were not affected by TORC1, suggesting that TORC1 activates PKA selectively rather than globally (see below). Thus, both models that account for the shared regulation by TORC1 and PKA appear to be valid. First, TORC1 is an upstream regulator of PKA toward some substrates, such as MAF1, YPK3, and KSP1, whose phosphorylation by PKA is TORC1-dependent. Second, TORC1 and PKA are in distinct but parallel pathways that converge on common target proteins or processes. This latter case includes proteins whose phosphorylation by PKA is not TORC1 dependent.

To investigate the molecular mechanism by which TORC1 controls PKA, we focused on the PKA negative regulatory subunit BCY1. We found that TORC1 inhibits phosphorylation of T129 (and other sites) in BCY1. Phenotypes conferred by mutation of T129 to phosphomimetic aspartate suggest that T129 phosphorylation activates BCY1 and thereby inactivates PKA. Furthermore, we found that TORC1 inhibits BCY1 T129 phosphorylation by inhibiting the MAP kinase MPK1. TORC1 inhibits MPK1 via the S6K ortholog SCH9. Thus, we have defined a pathway, consisting of TORC1-SCH9-MPK1-BCY1-PKA, by which TORC1 prevents inactivation of PKA. Although TORC1 phosphorylates and activates SCH9 directly and MPK1 phosphorylates (T129) and activates BCY1 directly, it remains to be determined how SCH9 inhibits phosphorylation and activation of MPK1 (see below).

How could regulation of BCY1 by TORC1 control PKA activity toward some but not all PKA substrates? On rapamycin treatment, BCY1 sequesters PKA in the nucleus (Schmelzle et al., 2004). This and our above findings suggest that phosphorylated BCY1 (at T129 and likely other sites) maintains PKA in the nucleus upon TORC1 inhibition and may thus control access of PKA to specific substrates. This control of PKA by BCY1 phosphorylation would be independent of PKA control by binding of cAMP to BCY1. This model is also supported by our observation that any mutation that disrupts the BCY1-TPK1 interaction, e.g., BCY1S145D or TPK1T241A/D/E, prevents nuclear accumulation of TPK1 upon rapamycin treatment (Supplementary Figure 7 and data not shown). Finally, this model is similar to a model proposed by Griffioen et al. (2001, 2003), suggesting that BCY1 phosphorylation upon glucose limitation controls PKA localization and accessibility to substrates. An alternative model is that T129-phosphorylated BCY1 binds and inhibits only a specific pool of PKA. This separate pool of PKA could be due to differential modification or localization of PKA by unknown factors. Different pools of PKA might be in part explained by the fact that there are three catalytic subunits of PKA (TPK1, TPK2, and TPK3) in yeast. Confirmation of the above or other possible models will require further study.

Griffioen et al. (2001, 2003) showed that BCY1 is phosphorylated on two clusters of serines (CI and CII) in response to stress. Here we identified, in addition to CI and CII, a third cluster of serine and threonine residues (CIII) that are phosphorylated upon rapamycin treatment. T129 in CIII is an important residue in the regulation of BCY1 and ultimately PKA. However, the mild phenotypes conferred by mutation of T129 to alanine or aspartate suggest that phosphorylation at this residue is not the sole event regulating BCY1 and PKA upon TORC1 inhibition. BCY1 is phosphorylated on at least 16 serine or threonine residues other than T129, including S74, S79, S83, T131, and S145. However, individual mutation of S74, S79, and S83 and T131 had no phenotypic consequence (data not shown). A phosphomimetic mutation of S145 resulted in BCY1 inactivation, suggesting that phosphorylation of this site regulates BCY1, but the phosphorylation of S145 was independent of TORC1 (Supplementary Figure 7). Further study will be required to determine the roles and kinase(s) for all the phosphorylation sites in BCY1.

MPK1 is a MAP kinase in the PKC1/cell wall integrity pathway that is activated in response to several stresses including TORC1 inhibition (Krause and Gray, 2002; Torres et al., 2002; Levin, 2005). Earlier studies have reported genetic interactions between the cell wall integrity pathway and the PKA pathway. For example, activation of the cell wall integrity pathway suppresses the heat-shock sensitivity caused by hyperactive RAS-CAMP signaling, and the ROH1 GDP/GTP exchange factor ROM2, which acts early in the cell integrity pathway, is required for PKA-mediated stress response (Verna et al., 1997; Park et al., 2005; Kuranda et al., 2006). Our observation that MPK1 phosphorylates and activates BCY1 is consistent with the above genetic interactions. Finally, we note that MPK1 is likely not the only kinase involved in PKA regulation by TORC1, as rapamycin-induced nuclear accumulation of PKA is not altered by loss of MPK1 (whereas BCY1 phosphorylation is) or presence of BCK1-20, a hyperactive MAPKKK BCK1 upstream of MPK1 (data not shown). Furthermore MPK1 deletion reduces but does not abolish rapamycin-induced dephosphorylation of MAF1 and YPK3.

TORC1 directly phosphorylates and activates the protein kinase SCH9 (Urban et al., 2007). SCH9 was originally identified as a multicopy suppressor of a PKA defect (Toda et al., 1988). Furthermore, SCH9 deletion severely decreases PKA-dependent phosphorylation of MSN2 and MAF1 (Trott et al., 2005; Huber et al., 2009; Lee et al., 2009). In agreement with these previous observations, we find that SCH9 acts downstream of TORC1 to maintain MPK1 inactive and PKA active. The molecular link between SCH9 and MPK1 is likely
indirect because MPK1 is phosphorylated and active when SCH9 is inactive. The link between SCH9 and MPK1 may involve ROM2. ROM2 was recently shown to interact genetically with the TORC1, PKA, and cell wall integrity pathways (Park et al., 2005; Kuranda et al., 2006).

ACKNOWLEDGMENTS

We thank J. M. Thevelein (University of Leuven, Belgium) for plasmids, R. Loewith (University of Geneva, Switzerland) for yeast strains and discussions, and D. Schwartz for the kind advice on using Motif-X 1.2. This work was supported by grants from the Canton of Basel, Systemx.ch and the Swiss National Science Foundation (M.N.H.).

REFERENCES


