Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive

Locatelli, G A; Di Santo, R; Crespan, E; Costi, R; Roux, A; Hübscher, U; Shevelev, I V; Blanca, G; Villani, G; Spadari, S; Maga, G (2005). Diketo hexenoic acid derivatives are novel selective non-nucleoside inhibitors of mammalian terminal deoxynucleotidyl transferases, with potent cytotoxic effect against leukemic cells. Molecular Pharmacology, 68(2):538-550.

Full text not available from this repository.

View at publisher

Abstract

Mammalian terminal deoxyribonucleotidyl transferase (TDT) catalyzes the non-template-directed polymerization of deoxyribonucleoside triphosphates and has a key role in V(D)J recombination during lymphocyte and repertoire development. More than 90% of leukemic cells in acute lymphocytic leukemia and approximately 30% of leukemic cells in the chronic myelogenous leukemia crisis show elevated TDT activity. This finding is connected to a poor prognosis and response to chemotherapy and reduced survival time. On the other hand, recent data indicated that TDT is not the only terminal deoxyribonucleotidyl transferase in mammalian cells. Its close relative, DNA polymerase lambda, can synthesize DNA both in a template-dependent (polymerase) and template-independent (terminal deoxyribonucleotidyl transferase) fashion. DNA polymerase lambda might be involved in the nonhomologous end-joining recombinational repair pathway of DNA double-strand breaks. In this work, we report the characterization of the mechanism of action of three diketo hexenoic acid (DKHA) derivatives, which proved to be extremely selective for the terminal deoxyribonucleotidyl transferase activity of DNA polymerase lambda and TDT. They seem to be the first non-nucleoside-specific inhibitors of mammalian terminal transferases reported. Moreover, the DKHA analog 6-(1-phenylmethyl-1H-indol-3-yl)-2,4-dioxo-5-hexenoic acid (RDS2119) was not toxic toward HeLa cells (CC(50) > 100 muM), whereas it showed significant cytotoxicity against the TDT(+) leukemia cell line MOLT-4 (CC(50) = 14.9 muM), thus having the potential to be further developed as a novel antitumor agent.

Citations

8 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 11 Feb 2008
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Biochemistry and Molecular Biology
DDC:570 Life sciences; biology
Language:English
Date:1 August 2005
Deposited On:11 Feb 2008 12:18
Last Modified:27 Nov 2013 20:12
Publisher:American Society for Pharmacology and Experimental Therapeutics
ISSN:0026-895X
Publisher DOI:10.1124/mol.105.013326
PubMed ID:15901847

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page