We consider the following elementary model for clustering by ballistic aggregation in an expanding universe. At the initial time, there is a doubly infinite sequence of particles lying in a one-dimensional universe that is expanding at constant rate. We suppose that each particle p attracts points at a certain rate a(p)/2 depending only on p, and when two particles, say p and q, collide by the effect of attraction, they merge as a single particle p*q. The main purpose of this work is to point at the following remarkable property of Poisson clouds in these dynamics. Under certain technical conditions, if at the initial time the system is distributed according to a spatially stationary Poisson cloud with intensity μ 0 , then at any time t > 0, the system will again have a Poissonian distribution, now with intensity μ t , where the family solves a generalization of Smoluchowski's coagulation equation.

Bertoin, Jean (2002). *Self-attracting Poisson clouds in an expanding universe.* Communications in Mathematical Physics, 232(1):59-81.

## Abstract

We consider the following elementary model for clustering by ballistic aggregation in an expanding universe. At the initial time, there is a doubly infinite sequence of particles lying in a one-dimensional universe that is expanding at constant rate. We suppose that each particle p attracts points at a certain rate a(p)/2 depending only on p, and when two particles, say p and q, collide by the effect of attraction, they merge as a single particle p*q. The main purpose of this work is to point at the following remarkable property of Poisson clouds in these dynamics. Under certain technical conditions, if at the initial time the system is distributed according to a spatially stationary Poisson cloud with intensity μ 0 , then at any time t > 0, the system will again have a Poissonian distribution, now with intensity μ t , where the family solves a generalization of Smoluchowski's coagulation equation.

## Citations

## Altmetrics

## Additional indexing

Item Type: | Journal Article, refereed, original work |
---|---|

Communities & Collections: | 07 Faculty of Science > Institute of Mathematics |

Dewey Decimal Classification: | 510 Mathematics |

Language: | English |

Date: | 2002 |

Deposited On: | 03 Jul 2013 13:13 |

Last Modified: | 05 Apr 2016 16:51 |

Publisher: | Springer |

ISSN: | 0010-3616 |

Publisher DOI: | https://doi.org/10.1007/s00220-002-0740-1 |

Related URLs: | http://www.ams.org/mathscinet-getitem?mr=1942857 http://www.zentralblatt-math.org/zbmath/search/?q=an%3A1016.83043 |

## Download

Full text not available from this repository.View at publisher

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.

You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.