Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Locatelli, G A; Savio, M; Forti, L; Shevelev, I V; Ramadan, K; Stivala, L A; Vannini, V; Hübscher, U; Spadari, S; Maga, G (2005). Inhibition of mammalian DNA polymerases by resveratrol: mechanism and structural determinants. Biochemical Journal, 389(2):259-268.

Full text not available from this repository.

View at publisher


Resveratrol, a natural compound found in many dietary plants and in red wine, plays an important role in the prevention of many human pathological processes, including inflammation, atherosclerosis and carcinogenesis. We have shown that the antiproliferative activity of resveratrol correlated with its ability to inhibit the replicative pols (DNA polymerases) alpha and delta in vitro [Stivala, Savio, Carafoli, Perucca, Bianchi, Maga, Forti, Pagnoni, Albini, Prosperi and Vannini (2001) J. Biol. Chem. 276, 22586-22594]. In this paper, we present the first detailed biochemical investigation on the mechanism of action of resveratrol towards mammalian pols. Our results suggest that specific structural determinants of the resveratrol molecule are responsible for selective inhibition of different mammalian pols, such as the family B pol alpha and the family X pol lambda. Moreover, the resveratrol derivative trans-3,5-dimethoxy-4-hydroxystilbene, which is endowed with a strong antiproliferative activity (Stivala et al., 2001), can inhibit pols alpha and lambda and also suppress the in vitro SV40 DNA replication. The potency of inhibition is similar to that of aphidicolin, an inhibitor of the three replicative pols alpha, delta and epsilon. Our findings establish the necessary background for the synthesis of resveratrol derivatives having more selective and potent antiproliferative activity.


28 citations in Web of Science®
32 citations in Scopus®
Google Scholar™


Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Biochemistry and Molecular Biology
Dewey Decimal Classification:570 Life sciences; biology
Date:15 July 2005
Deposited On:11 Feb 2008 12:18
Last Modified:05 Apr 2016 12:15
Publisher:Portland Press
Publisher DOI:10.1042/BJ20050094
PubMed ID:15773817

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page