UZH-Logo

Maintenance Infos

Differential glucose repression in common yeast strains in response to HXK2 deletion


Kümmel, Anne; Ewald, Jennifer Christina; Fendt, Sarah-Maria; Jol, Stefan Jasper; Picotti, Paola; Aebersold, Ruedi; Sauer, Uwe; Zamboni, Nicola; Heinemann, Matthias (2010). Differential glucose repression in common yeast strains in response to HXK2 deletion. FEMS Yeast Research, 10(3):322-332.

Abstract

Under aerobic, high glucose conditions, Saccharomyces cerevisiae exhibits glucose repression and thus a predominantly fermentative metabolism. Here, we show that two commonly used prototrophic representatives of the CEN.PK and S288C strain families respond differently to deletion of the hexokinase 2 (HXK2) – a key player in glucose repression: In CEN.PK, growth rate collapses and derepression occurs on the physiological level, while the S288C descendant FY4 Dhxk2 still grows like the parent strain and shows a fully repressed metabolism. A CEN.PK Dhxk2 strain with a repaired adenylate cyclase gene CYR1 maintains repression but not growth rate. A comparison of the parent strain’s physiology, metabolome, and proteome revealed higher metabolic rates, identical biomass, and byproduct yields, suggesting a lower Snf1 activity and a higher protein kinase A (PKA) activity in CEN.PK. This study highlights the importance of the genetic background in the processes of glucose signaling and regulation, contributes novel evidence on the overlap between the classical glucose repression pathway and the cAMP/PKA signaling pathway, and might have the potential to resolve some of the conflicting findings existing in the field.

Abstract

Under aerobic, high glucose conditions, Saccharomyces cerevisiae exhibits glucose repression and thus a predominantly fermentative metabolism. Here, we show that two commonly used prototrophic representatives of the CEN.PK and S288C strain families respond differently to deletion of the hexokinase 2 (HXK2) – a key player in glucose repression: In CEN.PK, growth rate collapses and derepression occurs on the physiological level, while the S288C descendant FY4 Dhxk2 still grows like the parent strain and shows a fully repressed metabolism. A CEN.PK Dhxk2 strain with a repaired adenylate cyclase gene CYR1 maintains repression but not growth rate. A comparison of the parent strain’s physiology, metabolome, and proteome revealed higher metabolic rates, identical biomass, and byproduct yields, suggesting a lower Snf1 activity and a higher protein kinase A (PKA) activity in CEN.PK. This study highlights the importance of the genetic background in the processes of glucose signaling and regulation, contributes novel evidence on the overlap between the classical glucose repression pathway and the cAMP/PKA signaling pathway, and might have the potential to resolve some of the conflicting findings existing in the field.

Citations

22 citations in Web of Science®
22 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

55 downloads since deposited on 11 Jul 2013
16 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:Special Collections > SystemsX.ch
Special Collections > SystemsX.ch > Research, Technology and Development Projects > YeastX
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2010
Deposited On:11 Jul 2013 08:02
Last Modified:05 Apr 2016 16:51
Publisher:Wiley-Blackwell
ISSN:1567-1356
Publisher DOI:https://doi.org/10.1111/j.1567-1364.2010.00609.x

Download

[img]
Preview
Filetype: PDF
Size: 459kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations