UZH-Logo

Maintenance Infos

The effect of sudden depressurization on pilots at cruising altitude


Muehlemann, Thomas; Holper, Lisa; Wenzel, Juergen; Wittkowski, Martin; Wolf, Martin (2013). The effect of sudden depressurization on pilots at cruising altitude. In: Back, Nathan; Cohen, Irun R; Lajtha, Abel; Lambris, John D; Paoletti, Rololfo. Oxygen Transport to Tissue XXXIV. New York: Springer, 177-83.

Abstract

The standard flight level for commercial airliners is ∼12 km (40 kft; air pressure: ∼ 200 hPa), the maximum certification altitude of modern airliners may be as high as 43-45 kft. Loss of structural integrity of an airplane may result in sudden depressurization of the cabin potentially leading to hypoxia with loss of consciousness of the pilots. Specialized breathing masks supply the pilots with oxygen. The aim of this study was to experimentally simulate such sudden depressurization to maximum design altitude in a pressure chamber while measuring the arterial and brain oxygenation saturation (SaO(2) and StO(2)) of the pilots. Ten healthy subjects with a median age of 50 (range 29-70) years were placed in a pressure chamber, breathing air from a cockpit mask. Pressure was reduced from 753 to 148 hPa within 20 s, and the test mask was switched to pure O(2) within 2 s after initiation of depressurization. During the whole procedure SaO(2) and StO(2) were measured by pulse oximetry, respectively near-infrared spectroscopy (NIRS; in-house built prototype) of the left frontal cortex. During the depressurization the SaO(2) dropped from median 93% (range 91-98%) to 78% (62-92%) by 16% (6-30%), while StO(2) decreased from 62% (47-67%) to 57% (43-62%) by 5% (3-14%). Considerable drops in oxygenation were observed during sudden depressurization. The inter-subject variability was high, for SaO(2) depending on the subjects' ability to preoxygenate before the depressurization. The drop in StO(2) was lower than the one in SaO(2) maybe due to compensation in blood flow.

The standard flight level for commercial airliners is ∼12 km (40 kft; air pressure: ∼ 200 hPa), the maximum certification altitude of modern airliners may be as high as 43-45 kft. Loss of structural integrity of an airplane may result in sudden depressurization of the cabin potentially leading to hypoxia with loss of consciousness of the pilots. Specialized breathing masks supply the pilots with oxygen. The aim of this study was to experimentally simulate such sudden depressurization to maximum design altitude in a pressure chamber while measuring the arterial and brain oxygenation saturation (SaO(2) and StO(2)) of the pilots. Ten healthy subjects with a median age of 50 (range 29-70) years were placed in a pressure chamber, breathing air from a cockpit mask. Pressure was reduced from 753 to 148 hPa within 20 s, and the test mask was switched to pure O(2) within 2 s after initiation of depressurization. During the whole procedure SaO(2) and StO(2) were measured by pulse oximetry, respectively near-infrared spectroscopy (NIRS; in-house built prototype) of the left frontal cortex. During the depressurization the SaO(2) dropped from median 93% (range 91-98%) to 78% (62-92%) by 16% (6-30%), while StO(2) decreased from 62% (47-67%) to 57% (43-62%) by 5% (3-14%). Considerable drops in oxygenation were observed during sudden depressurization. The inter-subject variability was high, for SaO(2) depending on the subjects' ability to preoxygenate before the depressurization. The drop in StO(2) was lower than the one in SaO(2) maybe due to compensation in blood flow.

Citations

1 citation in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 06 Aug 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Book Section, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neonatology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2013
Deposited On:06 Aug 2013 08:17
Last Modified:05 Apr 2016 16:53
Publisher:Springer
Number:765
ISSN:0065-2598
ISBN:978-1-4614-4771-9 (Print) 978-1-4614-4989-8 (Online)
Publisher DOI:https://doi.org/10.1007/978-1-4614-4989-8_25
Official URL:http://link.springer.com/chapter/10.1007%2F978-1-4614-4989-8_25
PubMed ID:22879031
Permanent URL: https://doi.org/10.5167/uzh-79593

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 279kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations