UZH-Logo

Maintenance Infos

Analysis of performance and age of the fastest 100-mile ultra-marathoners worldwide


Rust, C A; Knechtle, B; Rosemann, T; Lepers, R (2013). Analysis of performance and age of the fastest 100-mile ultra-marathoners worldwide. Clinics, 68(5):605-611.

Abstract

OBJECTIVES:
The performance and age of peak ultra-endurance performance have been investigated in single races and single race series but not using worldwide participation data. The purpose of this study was to examine the changes in running performance and the age of peak running performance of the best 100-mile ultra-marathoners worldwide.
METHOD:
The race times and ages of the annual ten fastest women and men were analyzed among a total of 35,956 finishes (6,862 for women and 29,094 for men) competing between 1998 and 2011 in 100-mile ultra-marathons.
RESULTS:
The annual top ten performances improved by 13.7% from 1,132±61.8 min in 1998 to 977.6±77.1 min in 2011 for women and by 14.5% from 959.2±36.4 min in 1998 to 820.6±25.7 min in 2011 for men. The mean ages of the annual top ten fastest runners were 39.2±6.2 years for women and 37.2±6.1 years for men. The age of peak running performance was not different between women and men (p>0.05) and showed no changes across the years.
CONCLUSION:
These findings indicated that the fastest female and male 100-mile ultra-marathoners improved their race time by ∼14% across the 1998–2011 period at an age when they had to be classified as master athletes. Future studies should analyze longer running distances (>200 km) to investigate whether the age of peak performance increases with increased distance in ultra-marathon running.

OBJECTIVES:
The performance and age of peak ultra-endurance performance have been investigated in single races and single race series but not using worldwide participation data. The purpose of this study was to examine the changes in running performance and the age of peak running performance of the best 100-mile ultra-marathoners worldwide.
METHOD:
The race times and ages of the annual ten fastest women and men were analyzed among a total of 35,956 finishes (6,862 for women and 29,094 for men) competing between 1998 and 2011 in 100-mile ultra-marathons.
RESULTS:
The annual top ten performances improved by 13.7% from 1,132±61.8 min in 1998 to 977.6±77.1 min in 2011 for women and by 14.5% from 959.2±36.4 min in 1998 to 820.6±25.7 min in 2011 for men. The mean ages of the annual top ten fastest runners were 39.2±6.2 years for women and 37.2±6.1 years for men. The age of peak running performance was not different between women and men (p>0.05) and showed no changes across the years.
CONCLUSION:
These findings indicated that the fastest female and male 100-mile ultra-marathoners improved their race time by ∼14% across the 1998–2011 period at an age when they had to be classified as master athletes. Future studies should analyze longer running distances (>200 km) to investigate whether the age of peak performance increases with increased distance in ultra-marathon running.

Citations

12 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

28 downloads since deposited on 09 Aug 2013
12 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of General Practice
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2013
Deposited On:09 Aug 2013 12:32
Last Modified:05 Apr 2016 16:53
Publisher:Faculdade de Medicina / USP
ISSN:1807-5932
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.6061/clinics/2013(05)05
Permanent URL: https://doi.org/10.5167/uzh-79757

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 943kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations