UZH-Logo

Maintenance Infos

A tale of migrations from east to west: the Irano-Turanian floristic region as a source of Mediterranean xerophytes


Manafzadeh, Sara; Salvo, Gabriele; Conti, Elena (2014). A tale of migrations from east to west: the Irano-Turanian floristic region as a source of Mediterranean xerophytes. Journal of Biogeography, 41(2):366-379.

Abstract

Aim
The Irano-Turanian (IT) floristic region is characterized by high levels of endemicity. Despite its potential role as a cradle of xerophytic taxa for neighbouring areas, its biogeographical history remains poorly studied. Haplophyllum, a diagnostic element of the IT region, was used as a model to discriminate between alternative biogeographical scenarios for the evolution of the region and, more specifically, to investigate whether it served as a source of xerophytes for the colonization of the Mediterranean Basin.
Location
Irano-Turanian floristic region (Central Asia and West Asiatic areas) and Mediterranean floristic region (western and eastern parts of the Mediterranean Basin).
Methods
Three chloroplast DNA regions were sequenced in 77 accessions of Haplophyllum and 37 accessions from other subfamilies of Rutaceae. To elucidate the temporal and spatial evolution of Haplophyllum in the IT and Mediterranean regions, we performed Bayesian molecular dating analyses with four fossil constraints and ancestral range reconstructions, respectively.
Results
Our molecular dating and ancestral area reconstruction analyses suggest that Haplophyllum originated in the Central Asian part of the IT region during the early Eocene and started to diversify in situ during the early Oligocene, soon after the vanishing of the Tethys Ocean. Our results further imply that Haplophyllum later invaded the eastern Mediterranean Basin in the middle-to-late Miocene, concomitantly with the Paratethys Salinity Crisis and rapid palaeobiogeographical changes in the proto-Mediterranean. Finally, Haplophyllum diversified in the western Mediterranean in the early Pliocene at the end of the Messinian Salinity Crisis.
Main conclusions
The IT floristic region can serve as a ‘donor’ of xerophytic taxa to ‘recipient’ neighbouring regions, including the Mediterranean floristic region. The climatic/geological processes during the Miocene–Pliocene, by increasing aridity and topographic heterogeneity, facilitated range shifts and allopatric speciation in the region.

Abstract

Aim
The Irano-Turanian (IT) floristic region is characterized by high levels of endemicity. Despite its potential role as a cradle of xerophytic taxa for neighbouring areas, its biogeographical history remains poorly studied. Haplophyllum, a diagnostic element of the IT region, was used as a model to discriminate between alternative biogeographical scenarios for the evolution of the region and, more specifically, to investigate whether it served as a source of xerophytes for the colonization of the Mediterranean Basin.
Location
Irano-Turanian floristic region (Central Asia and West Asiatic areas) and Mediterranean floristic region (western and eastern parts of the Mediterranean Basin).
Methods
Three chloroplast DNA regions were sequenced in 77 accessions of Haplophyllum and 37 accessions from other subfamilies of Rutaceae. To elucidate the temporal and spatial evolution of Haplophyllum in the IT and Mediterranean regions, we performed Bayesian molecular dating analyses with four fossil constraints and ancestral range reconstructions, respectively.
Results
Our molecular dating and ancestral area reconstruction analyses suggest that Haplophyllum originated in the Central Asian part of the IT region during the early Eocene and started to diversify in situ during the early Oligocene, soon after the vanishing of the Tethys Ocean. Our results further imply that Haplophyllum later invaded the eastern Mediterranean Basin in the middle-to-late Miocene, concomitantly with the Paratethys Salinity Crisis and rapid palaeobiogeographical changes in the proto-Mediterranean. Finally, Haplophyllum diversified in the western Mediterranean in the early Pliocene at the end of the Messinian Salinity Crisis.
Main conclusions
The IT floristic region can serve as a ‘donor’ of xerophytic taxa to ‘recipient’ neighbouring regions, including the Mediterranean floristic region. The climatic/geological processes during the Miocene–Pliocene, by increasing aridity and topographic heterogeneity, facilitated range shifts and allopatric speciation in the region.

Citations

8 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 16 Aug 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Systematic Botany and Botanical Gardens
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2014
Deposited On:16 Aug 2013 07:01
Last Modified:05 Apr 2016 16:54
Publisher:Wiley-Blackwell
ISSN:0305-0270
Publisher DOI:https://doi.org/10.1111/jbi.12185

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations