UZH-Logo

Maintenance Infos

Constitutive excessive erythrocytosis causes inflammation and increased vascular permeability in aged mouse brain


Ogunshola, O O; Moransard, M; Gassmann, M (2013). Constitutive excessive erythrocytosis causes inflammation and increased vascular permeability in aged mouse brain. Brain Research, 1531:48-57.

Abstract

Excessive erythrocytosis results in severely increased blood viscosity that may compromise the vascular endothelium. Using our transgenic mouse model of excessive erythrocytosis we previously showed that despite altered brain endothelial cell morphology and an activated vasculature, brain vascular integrity was largely maintained up to 4-5 months of age. We now present data showing that persistent long-term damage of the vascular wall during the later stages of adulthood (9-10 months) results in a chronic detrimental inflammatory phenotype and increased vessel permeability that likely contributes to the reduced life span of our erythropoietin overexpressing transgenic mouse. In aged transgenic animals inflammatory cells were detected in brain tissue and elevated RNA and protein levels of inflammatory markers such as IL-6 and TNFα were observed in both brain tissue and blood plasma. Additionally, increased expression of p53 and other pro-apoptotic markers, as well as decreased Bcl-xL expression in the brain vasculature, indicated ongoing cell death within the vascular compartment. Finally, abnormally elevated vascular permeability in all organs was detected in correlation with decreased expression of the tight junction protein occludin and the adherens junction protein β-catenin in brain. Thus chronic erythrocytosis results in sustained activation of inflammatory pathways, vascular dysfunction and blood-brain barrier disruption.

Abstract

Excessive erythrocytosis results in severely increased blood viscosity that may compromise the vascular endothelium. Using our transgenic mouse model of excessive erythrocytosis we previously showed that despite altered brain endothelial cell morphology and an activated vasculature, brain vascular integrity was largely maintained up to 4-5 months of age. We now present data showing that persistent long-term damage of the vascular wall during the later stages of adulthood (9-10 months) results in a chronic detrimental inflammatory phenotype and increased vessel permeability that likely contributes to the reduced life span of our erythropoietin overexpressing transgenic mouse. In aged transgenic animals inflammatory cells were detected in brain tissue and elevated RNA and protein levels of inflammatory markers such as IL-6 and TNFα were observed in both brain tissue and blood plasma. Additionally, increased expression of p53 and other pro-apoptotic markers, as well as decreased Bcl-xL expression in the brain vasculature, indicated ongoing cell death within the vascular compartment. Finally, abnormally elevated vascular permeability in all organs was detected in correlation with decreased expression of the tight junction protein occludin and the adherens junction protein β-catenin in brain. Thus chronic erythrocytosis results in sustained activation of inflammatory pathways, vascular dysfunction and blood-brain barrier disruption.

Citations

6 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

25 downloads since deposited on 16 Aug 2013
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
05 Vetsuisse Faculty > Institute of Veterinary Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2013
Deposited On:16 Aug 2013 07:19
Last Modified:05 Apr 2016 16:54
Publisher:Elsevier
ISSN:0006-8993
Publisher DOI:https://doi.org/10.1016/j.brainres.2013.07.033
PubMed ID:23892106

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 10MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations