UZH-Logo

Maintenance Infos

Genetic attributes of midwife toad (Alytes obstetricans) populations do not correlate with degree of species decline


Tobler, Ursina; Garner, Trenton W J; Schmidt, Benedikt R (2013). Genetic attributes of midwife toad (Alytes obstetricans) populations do not correlate with degree of species decline. Ecology and Evolution, 3(9):2819.

Abstract

Genetic diversity is crucial for long-term population persistence. Population loss and subsequent reduction in migration rate among the most important processes that are expected to lead to a reduction in genetic diversity and an increase in genetic differentiation. While the theory behind this is well-developed, empirical evidence from wild populations is inconsistent. Using microsatellite markers, we compared the genetic structure of populations of an amphibian species, the midwife toad (Alytes obstetricans), in four Swiss regions where the species has suffered variable levels of subpopulation extirpation. We also quantified the effects of several geographic factors on genetic structure and used a model selection approach to ascertain which of the variables were important for explaining genetic variation. Although subpopulation pairwise FST-values were highly significant even over small geographic scales, neither any of the geographic variables nor loss of subpopulations were important factors for predicting spatial genetic structure. The absence of a signature of subpopulation loss on genetic differentiation may suggest that midwife toad subpopulations function as relatively independent units.

Genetic diversity is crucial for long-term population persistence. Population loss and subsequent reduction in migration rate among the most important processes that are expected to lead to a reduction in genetic diversity and an increase in genetic differentiation. While the theory behind this is well-developed, empirical evidence from wild populations is inconsistent. Using microsatellite markers, we compared the genetic structure of populations of an amphibian species, the midwife toad (Alytes obstetricans), in four Swiss regions where the species has suffered variable levels of subpopulation extirpation. We also quantified the effects of several geographic factors on genetic structure and used a model selection approach to ascertain which of the variables were important for explaining genetic variation. Although subpopulation pairwise FST-values were highly significant even over small geographic scales, neither any of the geographic variables nor loss of subpopulations were important factors for predicting spatial genetic structure. The absence of a signature of subpopulation loss on genetic differentiation may suggest that midwife toad subpopulations function as relatively independent units.

Citations

5 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

44 downloads since deposited on 18 Sep 2013
27 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:Alytes obstetricans, microsatellites
Language:English
Date:2013
Deposited On:18 Sep 2013 11:22
Last Modified:20 Oct 2016 07:04
Publisher:Wiley Open Access
ISSN:2045-7758
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1002/ece3.677
PubMed ID:24101974
Permanent URL: https://doi.org/10.5167/uzh-80806

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 3.0 Unported (CC BY 3.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations