UZH-Logo

Maintenance Infos

Particle flow assays for fluorescent protein microarray applications


Bally, M; Dhumpa, R; Vörös, V (2009). Particle flow assays for fluorescent protein microarray applications. Biosensors and Bioelectronics, 24(5):1195-1200.

Abstract

Microarray technology has brought a paradigmatic change in bioanalytics. However, highly sensitive and accurate assays are still needed for a real breakthrough. We present a simple and generic approach for fluorescent signal amplification with fluorescent microparticle labels. The assay principle was demonstrated using a reverse array model consisting of spots of bovine serum albumin with a small fraction of the proteins biotinylated. Specific binding of streptavidin coated fluorescent microparticles to the spots was promoted by applying a controlled continuous microparticle flow. The surface bound beads were visualized and quantified with confocal microscopy images. Comparison with standard fluorescent and flow discrimination assays has revealed several advantages of our approach. First, non-specific particle binding could be reduced to less than 1particle/spot making therefore the visualization of single biomolecular bonds possible. Second, the amplification scheme presented here is generic and can be applied to any fluorescent microarray. Furthermore, this assay makes use of a biotin-streptavidin linkage and can therefore be applied to all kind of assays. Finally, single fluorescent microbeads can be easily visualized with standard optical equipments, so that no high performance equipment is required.

Abstract

Microarray technology has brought a paradigmatic change in bioanalytics. However, highly sensitive and accurate assays are still needed for a real breakthrough. We present a simple and generic approach for fluorescent signal amplification with fluorescent microparticle labels. The assay principle was demonstrated using a reverse array model consisting of spots of bovine serum albumin with a small fraction of the proteins biotinylated. Specific binding of streptavidin coated fluorescent microparticles to the spots was promoted by applying a controlled continuous microparticle flow. The surface bound beads were visualized and quantified with confocal microscopy images. Comparison with standard fluorescent and flow discrimination assays has revealed several advantages of our approach. First, non-specific particle binding could be reduced to less than 1particle/spot making therefore the visualization of single biomolecular bonds possible. Second, the amplification scheme presented here is generic and can be applied to any fluorescent microarray. Furthermore, this assay makes use of a biotin-streptavidin linkage and can therefore be applied to all kind of assays. Finally, single fluorescent microbeads can be easily visualized with standard optical equipments, so that no high performance equipment is required.

Citations

7 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 17 Dec 2008
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:January 2009
Deposited On:17 Dec 2008 13:32
Last Modified:05 Apr 2016 12:42
Publisher:Elsevier
ISSN:0956-5663
Publisher DOI:https://doi.org/10.1016/j.bios.2008.07.005
PubMed ID:18760590

Download

[img]
Filetype: PDF - Registered users only
Size: 664kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations