UZH-Logo

Maintenance Infos

A computational framework for modelling solid tumour growth


Lloyd, B A; Szczerba, D; Rudin, M; Székely, G (2008). A computational framework for modelling solid tumour growth. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 366(1879):3301-3318.

Abstract

The biology of cancer is a complex interplay of many underlying processes, taking place at different scales both in space and time. A variety of theoretical models have been developed, which enable one to study certain components of the cancerous growth process. However, most previous approaches only focus on specific aspects of tumour development, largely ignoring the influence of the evolving tumour environment. In this paper, we present an integrative framework to simulate tumour growth, including those model components that are considered to be of major importance. We start by addressing issues at the tissue level, where the phenomena are modelled as continuum partial differential equations. We extend this model with relevant components at the cellular or even sub-cellular level in a vertical fashion. We present an implementation of this framework, covering the major processes and treat the mechanical deformation due to growth, the biochemical response to hypoxia, blood flow, oxygenation and the explicit development of a vascular system in a coupled way. The results demonstrate the feasibility of the approach and its applicability to in silico studies of the influence of different treatment strategies (like the usage of novel anti-cancer drugs) for more effective therapy design.

Abstract

The biology of cancer is a complex interplay of many underlying processes, taking place at different scales both in space and time. A variety of theoretical models have been developed, which enable one to study certain components of the cancerous growth process. However, most previous approaches only focus on specific aspects of tumour development, largely ignoring the influence of the evolving tumour environment. In this paper, we present an integrative framework to simulate tumour growth, including those model components that are considered to be of major importance. We start by addressing issues at the tissue level, where the phenomena are modelled as continuum partial differential equations. We extend this model with relevant components at the cellular or even sub-cellular level in a vertical fashion. We present an implementation of this framework, covering the major processes and treat the mechanical deformation due to growth, the biochemical response to hypoxia, blood flow, oxygenation and the explicit development of a vascular system in a coupled way. The results demonstrate the feasibility of the approach and its applicability to in silico studies of the influence of different treatment strategies (like the usage of novel anti-cancer drugs) for more effective therapy design.

Citations

13 citations in Web of Science®
15 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 16 Dec 2008
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2008
Deposited On:16 Dec 2008 08:36
Last Modified:05 Apr 2016 12:42
Publisher:The Royal Society
ISSN:1364-503X
Publisher DOI:https://doi.org/10.1098/rsta.2008.0092
PubMed ID:18593664

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations