UZH-Logo

Maintenance Infos

Changes in the abundance of grassland species in monocultures versus mixtures and their relation to biodiversity effects


Marquard, Elisabeth; Schmid, Bernhard; Roscher, Christiane; De Luca, Enrica; Nadrowski, Karin; Weisser, Wolfgang W; Weigelt, Alexandra (2013). Changes in the abundance of grassland species in monocultures versus mixtures and their relation to biodiversity effects. PLoS ONE, 8(9):e75599.

Abstract

Numerous studies have reported positive effects of species richness on plant community productivity. Such biodiversity effects are usually quantified by comparing the performance of plant mixtures with reference monocultures. However, several mechanisms, such as the lack of resource complementarity and facilitation or the accumulation of detrimental agents, suggest that monocultures are more likely than mixtures to deteriorate over time. Increasing biodiversity effects over time could therefore result from declining monocultures instead of reflecting increases in the functioning of mixtures. Commonly, the latter is assumed when positive trends in biodiversity effects occur. Here, we analysed the performance of 60 grassland species growing in monocultures and mixtures over 9 years in a biodiversity experiment to clarify whether their temporal biomass dynamics differed and whether a potential decline of monocultures contributed significantly to the positive net biodiversity effect observed. Surprisingly, individual species’ populations produced, on average, significantly more biomass per unit area when growing in monoculture than when growing in mixture. Over time, productivity of species decreased at a rate that was, on average, slightly more negative in monocultures than in mixtures. The mean net biodiversity effect across all mixtures was continuously positive and ranged between 64–217 g per m2. Short-term increases in the mean net biodiversity effect were only partly due to deteriorating monocultures and were strongly affected by particular species gaining dominance in mixtures in the respective years. We conclude that our species performed, on average, comparably in monocultures and mixtures; monoculture populations being slightly more productive than mixture populations but this trend decreased over time. This suggested that negative feedbacks had not yet affected monocultures strongly but could potentially become more evident in the future. Positive biodiversity effects on aboveground productivity were heavily driven by a small, but changing, set of species that behaved differently from the average species.

Numerous studies have reported positive effects of species richness on plant community productivity. Such biodiversity effects are usually quantified by comparing the performance of plant mixtures with reference monocultures. However, several mechanisms, such as the lack of resource complementarity and facilitation or the accumulation of detrimental agents, suggest that monocultures are more likely than mixtures to deteriorate over time. Increasing biodiversity effects over time could therefore result from declining monocultures instead of reflecting increases in the functioning of mixtures. Commonly, the latter is assumed when positive trends in biodiversity effects occur. Here, we analysed the performance of 60 grassland species growing in monocultures and mixtures over 9 years in a biodiversity experiment to clarify whether their temporal biomass dynamics differed and whether a potential decline of monocultures contributed significantly to the positive net biodiversity effect observed. Surprisingly, individual species’ populations produced, on average, significantly more biomass per unit area when growing in monoculture than when growing in mixture. Over time, productivity of species decreased at a rate that was, on average, slightly more negative in monocultures than in mixtures. The mean net biodiversity effect across all mixtures was continuously positive and ranged between 64–217 g per m2. Short-term increases in the mean net biodiversity effect were only partly due to deteriorating monocultures and were strongly affected by particular species gaining dominance in mixtures in the respective years. We conclude that our species performed, on average, comparably in monocultures and mixtures; monoculture populations being slightly more productive than mixture populations but this trend decreased over time. This suggested that negative feedbacks had not yet affected monocultures strongly but could potentially become more evident in the future. Positive biodiversity effects on aboveground productivity were heavily driven by a small, but changing, set of species that behaved differently from the average species.

Citations

6 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

42 downloads since deposited on 15 Oct 2013
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:grassland species, monocultures, mixtures, biodiversity effects
Language:English
Date:2013
Deposited On:15 Oct 2013 14:21
Last Modified:20 Jul 2016 07:38
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
Funders:German Research Foundation, Friedrich Schiller University of Jena, Max Planck Institute for Biogeochemistry, Jena, Swiss National Science Foundation
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0075599
PubMed ID:24098704
Permanent URL: https://doi.org/10.5167/uzh-81633

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations