Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-825

Mossi, R; Jónsson, Z O; Allen, B L; Hardin, S H; Hübscher, U (1997). Replication factor C interacts with the C-terminal side of proliferating cell nuclear antigen. Journal of Biological Chemistry, 272(3):1769-1776.

View at publisher


Replication factor C (RF-C) is a heteropentameric protein essential for DNA replication and repair. It is a molecular matchmaker required for loading of proliferating cell nuclear antigen (PCNA) onto double-stranded DNA and, thus, for PCNA-dependent DNA elongation by DNA polymerases delta and epsilon. To elucidate the mode of RF-C binding to the PCNA clamp, modified forms of human PCNA were used that could be 32P-labeled in vitro either at the C or the N terminus. Using a kinase protection assay, we show that the heteropentameric calf thymus RF-C was able to protect the C-terminal region but not the N-terminal region of human PCNA from phosphorylation, suggesting that RF-C interacts with the PCNA face at which the C termini are located (C-side). A similar protection profile was obtained with the recently identified PCNA binding region (residues 478-712), but not with the DNA binding region (residues 366-477), of the human RF-C large subunit (Fotedar, R., Mossi, R., Fitzgerald, P., Rousselle, T., Maga, G., Brickner, H., Messner, H., Khastilba, S., Hübscher, U., and Fotedar, A., (1996) EMBO J., 15, 4423-4433). Furthermore, we show that the RF-C 36 kDa subunit of human RF-C could interact independently with the C-side of PCNA. The RF-C large subunit from a third species, namely Drosophila melanogaster, interacted similarly with the modified human PCNA, indicating that the interaction between RF-C and PCNA is conserved through eukaryotic evolution.


63 citations in Web of Science®
63 citations in Scopus®
Google Scholar™



60 downloads since deposited on 11 Feb 2008
8 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Biochemistry and Molecular Biology
Dewey Decimal Classification:570 Life sciences; biology
Date:17 January 1997
Deposited On:11 Feb 2008 12:18
Last Modified:05 Apr 2016 12:16
Publisher:American Society for Biochemistry and Molecular Biology
Publisher DOI:10.1074/jbc.272.3.1769
PubMed ID:8999859

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page