UZH-Logo

Notes on "Ewald summation of electrostatic multipole interactions up to quadrupolar level" [J. Chem. Phys. 119, 7471 (2003)]


Laino, T; Hutter, J (2008). Notes on "Ewald summation of electrostatic multipole interactions up to quadrupolar level" [J. Chem. Phys. 119, 7471 (2003)]. Journal of Chemical Physics, 129(7):074102.

Abstract

In an article {[}A. Aguado and P. A. Madden, J. Chem. Phys. 119, 7471 (2003)] published in this journal, Ewald summation expressions were derived for the energy, interatomic forces, pressure tensor, electrostatic field, and electrostatic field gradients in simulation system composed of molecules with charges, induced dipoles, and quadrupoles. In this letter we propose an alternative formulation of the reciprocal space terms generalized to higher multipoles, providing, at the same time, a few important corrections for previously published derivations. The present expressions, more compact than the ones proposed in the original work, provide a straightforward approach to implement an Ewald summation scheme for multipole interactions in codes where a standard Ewald summation is already available. A major result of the present derivation is an increase in the computational efficiency compared to the previous implementation of the several different electrostatic terms.

In an article {[}A. Aguado and P. A. Madden, J. Chem. Phys. 119, 7471 (2003)] published in this journal, Ewald summation expressions were derived for the energy, interatomic forces, pressure tensor, electrostatic field, and electrostatic field gradients in simulation system composed of molecules with charges, induced dipoles, and quadrupoles. In this letter we propose an alternative formulation of the reciprocal space terms generalized to higher multipoles, providing, at the same time, a few important corrections for previously published derivations. The present expressions, more compact than the ones proposed in the original work, provide a straightforward approach to implement an Ewald summation scheme for multipole interactions in codes where a standard Ewald summation is already available. A major result of the present derivation is an increase in the computational efficiency compared to the previous implementation of the several different electrostatic terms.

Citations

23 citations in Web of Science®
24 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

87 downloads since deposited on 19 Jan 2009
17 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2008
Deposited On:19 Jan 2009 12:45
Last Modified:29 May 2016 12:34
Publisher:American Institute of Physics
ISSN:0021-9606
Additional Information:Copyright 2008 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in "The Journal of Chemical Physics" and may be found at http://jcp.aip.org/jcp/top.jsp.
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1063/1.2970887
PubMed ID:19044755
Permanent URL: http://doi.org/10.5167/uzh-8286

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher
[img]
Preview
Content: Published Version
Filetype: PDF
Size: 1MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations