UZH-Logo

Maintenance Infos

Serotonin regulates macrophage-mediated angiogenesis in a mouse model of colon cancer allografts


Nocito, A; Dahm, F; Jochum, W; Jang, J H; Georgiev, P; Bader, M; Graf, R; Clavien, P A (2008). Serotonin regulates macrophage-mediated angiogenesis in a mouse model of colon cancer allografts. Cancer Research, 68(13):5152-5158.

Abstract

Serotonin, a neurotransmitter with numerous functions in the central nervous system (CNS), is emerging as an important signaling molecule in biological processes outside of the CNS. Recent advances have implicated serotonin as a regulator of inflammation, proliferation, regeneration, and repair. The role of serotonin in tumor biology in vivo has not been elucidated. Using a genetic model of serotonin deficiency (Tph1(-/-)) in mice, we show serotonin to be crucial for the growth of s.c. colon cancer allografts in vivo. Serotonin does not enhance tumor cell proliferation but acts as a regulator of angiogenesis by reducing the expression of matrix metalloproteinase 12 (MMP-12) in tumor-infiltrating macrophages, entailing lower levels of angiostatin-an endogenous inhibitor of angiogenesis. Accordingly, serotonin deficiency causes slower growth of s.c. tumors by reducing vascularity, thus increasing hypoxia and spontaneous necrosis. The biological relevance of these effects is underscored by the reconstitution of serotonin synthesis in Tph1(-/-) mice, which restores allograft phenotype in all aspects. In conclusion, we show how serotonin regulates angiogenesis in s.c. colon cancer allografts by influencing MMP-12 expression in tumor-infiltrating macrophages, thereby affecting the production of circulating angiostatin.

Abstract

Serotonin, a neurotransmitter with numerous functions in the central nervous system (CNS), is emerging as an important signaling molecule in biological processes outside of the CNS. Recent advances have implicated serotonin as a regulator of inflammation, proliferation, regeneration, and repair. The role of serotonin in tumor biology in vivo has not been elucidated. Using a genetic model of serotonin deficiency (Tph1(-/-)) in mice, we show serotonin to be crucial for the growth of s.c. colon cancer allografts in vivo. Serotonin does not enhance tumor cell proliferation but acts as a regulator of angiogenesis by reducing the expression of matrix metalloproteinase 12 (MMP-12) in tumor-infiltrating macrophages, entailing lower levels of angiostatin-an endogenous inhibitor of angiogenesis. Accordingly, serotonin deficiency causes slower growth of s.c. tumors by reducing vascularity, thus increasing hypoxia and spontaneous necrosis. The biological relevance of these effects is underscored by the reconstitution of serotonin synthesis in Tph1(-/-) mice, which restores allograft phenotype in all aspects. In conclusion, we show how serotonin regulates angiogenesis in s.c. colon cancer allografts by influencing MMP-12 expression in tumor-infiltrating macrophages, thereby affecting the production of circulating angiostatin.

Citations

46 citations in Web of Science®
51 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 18 Dec 2008
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Visceral and Transplantation Surgery
04 Faculty of Medicine > University Hospital Zurich > Division of Surgical Research
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2008
Deposited On:18 Dec 2008 14:47
Last Modified:05 Apr 2016 12:43
Publisher:American Association for Cancer Research
ISSN:0008-5472
Publisher DOI:https://doi.org/10.1158/0008-5472.CAN-08-0202
PubMed ID:18593914

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations