UZH-Logo

Maintenance Infos

A coordinated interplay: proteins with multiple functions in DNA replication, DNA repair, cell cycle/checkpoint control, and transcription.


Stucki, M; Stagljar, I; Jónsson, Z O; Hübscher, U (2001). A coordinated interplay: proteins with multiple functions in DNA replication, DNA repair, cell cycle/checkpoint control, and transcription. Progress in Nucleic Acid Research and Molecular Biology, 65:261-298.

Abstract

In eukaryotic cells, DNA transactions such as replication, repair, and transcription require a large set of proteins. In all of these events, complexes of more than 30 polypetides appear to function in highly organized and structurally well-defined machines. We have learned in the past few years that the three essential macromolecular events, replication, repair, and transcription, have common functional entities and are coordinated by complex regulatory mechanisms. This can be documented for replication and repair, for replication and checkpoint control, and for replication and cell cycle control, as well as for replication and transcription. In this review we cover the three different protein classes: DNA polymerases, DNA polymerase accessory proteins, and selected transcription factors. The "common enzyme-different pathway strategy" is fascinating from several points of view: first, it might guarantee that these events are coordinated; second, it can be viewed from an evolutionary angle; and third, this strategy might provide cells with backup mechanisms for essential physiological tasks.

In eukaryotic cells, DNA transactions such as replication, repair, and transcription require a large set of proteins. In all of these events, complexes of more than 30 polypetides appear to function in highly organized and structurally well-defined machines. We have learned in the past few years that the three essential macromolecular events, replication, repair, and transcription, have common functional entities and are coordinated by complex regulatory mechanisms. This can be documented for replication and repair, for replication and checkpoint control, and for replication and cell cycle control, as well as for replication and transcription. In this review we cover the three different protein classes: DNA polymerases, DNA polymerase accessory proteins, and selected transcription factors. The "common enzyme-different pathway strategy" is fascinating from several points of view: first, it might guarantee that these events are coordinated; second, it can be viewed from an evolutionary angle; and third, this strategy might provide cells with backup mechanisms for essential physiological tasks.

Citations

20 citations in Web of Science®
36 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Biochemistry and Molecular Biology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2001
Deposited On:11 Feb 2008 12:18
Last Modified:05 Apr 2016 12:16
Publisher:Elsevier
ISSN:0079-6603
Publisher DOI:10.1016/S0079-6603(00)65007-9
PubMed ID:11008490

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations