UZH-Logo

Maintenance Infos

Mechanisms of haptoglobin protection against hemoglobin peroxidation triggered endothelial damage


Schaer, C A; Deuel, J W; Bittermann, A G; Rubio, I G; Schoedon, G; Spahn, D R; Wepf, R A; Vallelian, F; Schaer, D J (2013). Mechanisms of haptoglobin protection against hemoglobin peroxidation triggered endothelial damage. Cell Death and Differentiation, 20(11):1569-1579.

Abstract

Extracellular hemoglobin (Hb) has been recognized as a disease trigger in hemolytic conditions such as sickle cell disease, malaria, and blood transfusion. In vivo, many of the adverse effects of free Hb can be attenuated by the Hb scavenger acute-phase protein haptoglobin (Hp). The primary physiologic disturbances that can be caused by free Hb are found within the cardiovascular system and Hb-triggered oxidative toxicity toward the endothelium has been promoted as a potential mechanism. The molecular mechanisms of this toxicity as well as of the protective activities of Hp are not yet clear. Within this study, we systematically investigated the structural, biochemical, and cell biologic nature of Hb toxicity in an endothelial cell system under peroxidative stress. We identified two principal mechanisms of oxidative Hb toxicity that are mediated by globin degradation products and by modified lipoprotein species, respectively. The two damage pathways trigger diverse and discriminative inflammatory and cytotoxic responses. Hp provides structural stabilization of Hb and shields Hb's oxidative reactions with lipoproteins, providing dramatic protection against both pathways of toxicity. By these mechanisms, Hp shifts Hb's destructive pseudo-peroxidative reaction to a potential anti-oxidative function during peroxidative stress.

Extracellular hemoglobin (Hb) has been recognized as a disease trigger in hemolytic conditions such as sickle cell disease, malaria, and blood transfusion. In vivo, many of the adverse effects of free Hb can be attenuated by the Hb scavenger acute-phase protein haptoglobin (Hp). The primary physiologic disturbances that can be caused by free Hb are found within the cardiovascular system and Hb-triggered oxidative toxicity toward the endothelium has been promoted as a potential mechanism. The molecular mechanisms of this toxicity as well as of the protective activities of Hp are not yet clear. Within this study, we systematically investigated the structural, biochemical, and cell biologic nature of Hb toxicity in an endothelial cell system under peroxidative stress. We identified two principal mechanisms of oxidative Hb toxicity that are mediated by globin degradation products and by modified lipoprotein species, respectively. The two damage pathways trigger diverse and discriminative inflammatory and cytotoxic responses. Hp provides structural stabilization of Hb and shields Hb's oxidative reactions with lipoproteins, providing dramatic protection against both pathways of toxicity. By these mechanisms, Hp shifts Hb's destructive pseudo-peroxidative reaction to a potential anti-oxidative function during peroxidative stress.

Citations

16 citations in Web of Science®
17 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

31 downloads since deposited on 07 Nov 2013
13 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Anatomy
04 Faculty of Medicine > University Hospital Zurich > Clinic and Policlinic for Internal Medicine
04 Faculty of Medicine > Center for Integrative Human Physiology
04 Faculty of Medicine > University Hospital Zurich > Institute of Anesthesiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:30 August 2013
Deposited On:07 Nov 2013 11:50
Last Modified:05 Apr 2016 17:06
Publisher:Nature Publishing Group
ISSN:1350-9047
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/cdd.2013.113
PubMed ID:23995229
Permanent URL: https://doi.org/10.5167/uzh-84372

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 4MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations