Second harmonic generation microscopy of fetal membranes under deformation: Normal and altered morphology

Mauri, A; Perrini, M; Mateos, J M; Maake, C; Ochsenbein-Koelble, N; Zimmermann, R; Ehrbar, M; Mazza, E

Abstract: INTRODUCTION: Insight into the microstructure of fetal membrane and its response to deformation is important for understanding causes of preterm premature rupture of the membrane. However, the microstructure of fetal membranes under deformation has not been visualized yet. Second harmonic generation microscopy, combined with an in-situ stretching device, can provide this valuable information. METHODS: Eight fetal membranes were marked over the cervix with methylene blue during elective caesarean section. One sample per membrane of reflected tissue, between the placenta and the cervical region, was cyclically stretched with a custom built inflation device. Samples were mounted on an in-situ stretching device and imaged with a multiphoton microscope at different deformation levels. Microstructural parameters such as thickness and collagen orientation were determined. Image entropy was evaluated for the spongy layer. RESULTS: The spongy layer consistently shows an altered collagen structure in the cervical and cycled tissue compared with the reflected membrane, corresponding to a significantly higher image entropy. An increased thickness of collagenous layers was found in cervical and stretched samples in comparison to the reflected tissue. Significant collagen fibre alignment was found to occur already at moderate deformation in all samples. CONCLUSIONS: For the first time, second harmonic generation microscopy has been used to visualize the microstructure of fetal membranes. Repeated mechanical loading was shown to affect the integrity of the amnion-chorion interface which might indicate an increased risk of premature rupture of fetal membrane. Moreover, mechanical loading might contribute to morphological alterations of the fetal membrane over the cervical region.

DOI: https://doi.org/10.1016/j.placenta.2013.09.002

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-84841
Accepted Version

Originally published at:
DOI: https://doi.org/10.1016/j.placenta.2013.09.002
Second Harmonic Generation Microscopy of Foetal Membranes under Deformation: Normal and Altered Morphology

Arabella Mauria,*, Michela Perrinia,b,*, José Maria Mateosc, Caroline Maaked, Nicole Ochsenbein-Koebbleb, Roland Zimmermannb, Martin Ehrbarb, Edoardo Mazzaa,e

*These two authors contributed equally

aDepartment of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
bDepartment of Obstetrics, University Hospital Zürich, 8091 Zurich, Switzerland
cCenter for Microscopy and Image Analysis, University of Zurich, 8057 Zurich, Switzerland
dInstitute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
eSwiss Federal Laboratories for Materials Science and Technology, EMPA, 8600 Dübendorf, Switzerland

Corresponding author:
Arabella Mauri
ETH Zurich / Center of Mechanics
Tannenstrasse 3, 8092 Zurich, Switzerland
Tel: +41 44 632 2630; Fax: +41 44 632 1145
mauri@imes.mavt.ethz.ch
Abstract

Introduction: Insight into the microstructure of foetal membrane and its response to deformation is important for understanding causes of preterm premature rupture of the membrane. However, the microstructure of foetal membranes under deformation has not been visualized yet. Second harmonic generation microscopy, combined with an in-situ stretching device, can provide this valuable information.

Methods: Eight foetal membranes were marked over the cervix with methylene blue during elective caesarean section. One sample per membrane of reflected tissue, between the placenta and the cervical region, was cyclically stretched with a custom built inflation device. Samples were mounted on an in-situ stretching device and imaged with a multiphoton microscope at different deformation levels. Microstructural parameters such as thickness and collagen orientation were determined. Image entropy was evaluated for the spongy layer.

Results: The spongy layer consistently shows an altered collagen structure in the cervical and cycled tissue compared with the reflected membrane, corresponding to a significantly higher image entropy. An increased thickness of collagenous layers was found in cervical and stretched samples in comparison to the reflected tissue. Significant collagen fibre alignment was found to occur already at moderate deformation in all samples.

Conclusions: For the first time, second harmonic generation microscopy has been used to visualize the microstructure of foetal membranes. Repeated mechanical loading was shown to affect the integrity of the amnion-chorion interface which might indicate an increased risk of premature rupture of foetal membrane. Moreover, mechanical loading might contribute to morphological alterations of the foetal membrane over the cervical region.
Introduction

The integrity of the foetal membrane (FM) is essential during pregnancy in order to avoid preterm delivery. The preterm premature rupture of membrane affects about 3% of pregnancies and causes around 25-30% of all preterm deliveries [1]. A better understanding of the microstructure of FM, its alterations and its behaviour under deformation broaden the understanding of the mechanisms leading to premature mechanical rupture [2]. In addition, the increasing interest in the amniotic membrane as scaffold for tissue-engineered implants [3, 4, 5, 6] and as in vitro biological models [7, 8] further motivates the present investigation.

The microstructure of amnion and chorion was previously studied by using confocal light microscopy [9, 10, 11, 12, 15] and electron microscopy [11, 13, 14, 15] to identify membrane’s sub-layers, collagen types, cellular and extracellular components. A zone of altered morphology (ZAM) was identified over the cervix in term FM both pre labour [16] and post labour [17, 18]. The ZAM tissue shows swelling of the amnion and reduced thickness of the choriodecidua compared to the reflected tissue (between the placental border and ZAM) [16, 21]. These microstructural alterations were considered to be a consequence of biochemical factors, such as a local increase of matrix metalloproteinases [19, 20] and poly(ADP-ribose) polymerase cleavage [21], which influence collagen remodelling and cellular apoptosis, respectively.

The microstructure of FM could not be visualized under deformation due to limitations of the used methods. Nonlinear microscopy techniques, such as second harmonic generation (SHG) and multiphoton microscopy, allow the visualization of collagen and elastin structures without fixation and staining of the tissue [22]. Moreover, the two photon excitation can penetrate deeper into the tissue allowing imaging of relatively thick samples. Thus, this new technique lends itself to investigate the response of extracellular components under deformation, e.g. for porcine arterial tissue [23] or rat-tail tendons [24].
Acute in-vitro stretching of amniotic epithelial cells and FM has been shown to enhance expression of cytokine (interleukin8 and Visfatin) that are usually up-regulated in association with labour [25, 26, 27]. Repeated physiological mechanical stimuli affect mechanical properties of FM [28, 29], but their effect on the microstructure has not been investigated yet.

In this study, for the first time SHG microscopy was used to investigate the normal and altered morphology of FM. This technique was combined with an in-situ stretching device to visualize and quantify collagen alignment under uniaxial tension. Comparison of reflected, ZAM and cyclically inflated tissue addressed the hypothesis that repeated stretching of FM over the cervix might contribute to the morphological alterations observed in the ZAM.

Methods

A. Samples procurement and preparation

Foetal membranes (n=8) were collected from patients who underwent elective caesarean sections at 38 gestational weeks. Patients were recruited with informed written consent using a protocol approved by the Ethical Committee of the District of Zürich (study Stv22/2006). The selected pregnancies had no labour contractions prior delivery, no preterm rupture of the membrane, no diabetes mellitus and were negative for streptococcus B, HIV, hepatitis A and B, chlamydia and cytomegaly. Membranes were perioperatively marked over the internal cervical os with a cotton-tipped applicator dipped in methylene blue. One sample from the marked area and two samples of reflected membrane were harvested, stored in Ringer’s lactate solution, tested and imaged within 5 hours from the delivery (Fig. 1a).
B. Inflation cyclic tests

For each FM, one sample of reflected membrane was first cyclically stretched with a custom-built inflation device [30] (Fig. 1b). Circular specimens (70 mm diameter) were clamped between a cover ring and an aluminium cylinder and inflated with Ringer’s lactate solution using a peristaltic pump, controlled with LabView. A chamber was placed on the cover ring and filled with the solution to keep samples moist during experiments (Fig. 1b). Samples were stretched by application of pressure ranging between 10 and 40 mmHg for 60 cycles lasting one minute each, using a protocol representative of contractions during early labour [29].

C. In situ imaging with the multiphoton microscope

Samples from reflected (R), ZAM and cycled (C) tissues were collected, cut in rectangular shape (50 mm x 10 mm), stained with a nuclear staining (DAPI, 4’, 6-diamidino-2-phenylindole, dihydrochloride, Invitrogen) and mounted on a custom-made stretching device with the amnion upwards (Fig. 1c). Samples were tested at room temperature in Ringer’s lactate solution to ensure a physiological hydration and imaged with a multiphoton microscope (Fluoview 1000 MPE, Olympus) using a water objective (XLPlan N 25x, NA 1.05) (Fig. 1c). 3D stacks were acquired starting from the amniotic epithelium through the whole thickness using a Ti:Sapphire Laser (wavelength = 820 nm) with an in-plane resolution of about 363 nm [31]. Second harmonic generation for collagen was detected with a specific filter (Olympus FV10-MRROPT, BA397-412), whereas the fluorescence of the nuclei (DAPI) was simultaneously detected in a second channel (BA455-490).
D. Histological sections

Samples of tissue near to the imaged specimens were fixed in 4% paraformaldehyde for 12 hours at 4°C and routinely embedded in paraffin. From all tissue blocks, sections of 4 µm were cut and stained with either hematoxyline and eosine or resorcin fuchsin for elastin according to routine procedures. Sections were coverslipped and analysed by bright-field microscopy (Zeiss Axiovert 200M).

E. Processing of images

Image analysis was performed to extract the entropy, the thickness and the collagen orientation. 2D images were exported from the microscope data and post processed in Matlab (MathWorks, Natick, Massachusetts, U.S.A.) using custom written algorithms. The image entropy is a statistical measure of the randomness based on the intensity histogram and is used to characterize the texture of images [32]. This parameter was calculated for representative images of the spongy layer with the Matlab function “entropy”.

The thickness of collagenous layers (compact, fibroblast, spongy and reticular layers) was measured from the intensity of grayscale images in the stack. An intensity factor was defined for each image as the sum of pixels intensity normalized for its dimensions and grey scale. An intensity threshold was used to define the beginning and the end of the sample. The thickness was computed for each sample 16 times over quadratic 32 x 32 µm² regions and averaged.

The collagen orientation was identified by using the principal direction analysis [33]. Images containing only the SHG signal of collagen were first converted to grayscale and filtered with an average filter; successively the angular orientation for each sub-region was extracted (2 x 2 µm²) and fitted with a truncated normal distribution. The standard deviation (σ) of this distribution is
A reduction of \(\sigma \) during deformation indicates an increased alignment of collagen structures in the loading direction.

F. Statistical analysis

The statistical analysis of the investigated parameters was performed in R: A Language and Environment for Statistical Computing (Open Source Software 2013). A linear mixed effect model was implemented to compare entropy and thickness values of R, ZAM, C and \(\sigma \) at 0%, 20% and 40% of deformation (\(p < 0.05 \) was considered statistically significant). Results are reported as mean ± standard deviation.

Results

A. Membrane Morphology

Nonlinear laser scanning microscopy revealed the microstructure of FM. Figure 2 shows layers of one representative sample of reflected FM. Under the amniotic epithelium, collagenous structures are visible and different layers can be identified by the presence (fibroblast layer, reticular layer) or absence (compact layer, spongy layer) of cellular nuclei. The amnion is characterized by a homogeneous compact layer of collagen on top of the fibroblast layer. The chorion, mainly composed by trophoblast cells, is connected to the amnion by an interface, the spongy layer. Histological sections show collagenous and cellular layers (Fig. 3b) in accordance with SHG microscopy and thin layers of elastin (Fig. 3a).

Samples of ZAM (Fig. 4) and C (Fig. 5) show the same layered structure of R, although collagen appears altered in the fibroblast and spongy layers: it consistently displays a non-uniform structure with curly fibre bundles, as opposed to its homogeneous appearance in R. The alteration of the spongy layer in ZAM and C is consistent in all membranes (Fig. 6) and confirmed by a
significantly higher image entropy (ZAM: 6.08 ± 0.26, C: 6.19 ± 0.23) compared to R (5.63 ± 0.27). The reticular layer seems similarly altered in ZAM, but not in C, while no changes are visible in the microstructure of the compact layer.

Moreover, the thickness of collagensous layers is higher in ZAM (367 ± 100 µm) and in C (294 ± 63 µm), compared to R (249 ± 81 µm). Similarly, histological sections show the swelling of collagenous layer in ZAM and C (Figs. 3c and 3d). Thickness differences are significant between ZAM vs. R, but not between C vs. ZAM and R vs. C.

B. Microstructure under Deformation

Samples of R, ZAM and C have been stretched and imaged at 20% and 40% of deformation. Both cellular nuclei and collagen were observed to align in the loading direction (Figs. 2, 4, 5). In the reticular layer of ZAM and the fibroblast and spongy layers of ZAM and C, collagen fibres are organized in well-defined bundles under deformation.

The standard deviation of the truncated normal distribution of collagen decreases significantly from 0% of deformation (R: 139 ± 95, ZAM: 171 ± 111, C: 123 ± 61) to 20% of deformation (R: 77 ± 21, ZAM: 94 ± 35, C: 75 ± 8) for all the groups, thus indicating a strong alignment of collagen at moderate deformation. The standard deviation decreases, but not significantly, between 20% and 40% of deformation (R: 69 ± 9, ZAM: 73 ± 26, C: 70 ± 7).

Discussion

Second harmonic generation microscopy was used for the first time to visualize the microstructure of FM and its changes under deformation. Second harmonic generation in combination with our custom-built stretching device allows the investigation of biological membranes in their physiological hydration and without chemical fixation, which is the great
advantage of this technique compared to electron microscopy. Nonlinear laser scanning microscopy allows the simultaneous investigation of collagen and elastin, through SHG and autofluorescence, respectively [22]. In this study, the elastin could not be visualized with the multiphoton microscope because of the low content and small dimensions of elastic structures in FM [34]. Histological sections stained with resorcin fuchsin showed few thin layers of elastin, the most distinct of which is below the epithelium.

The FM consists of two mesoscopic layers, the amnion and the chorion, connected by an interface, the spongy layer, which was usually associated with the amnion [35]. This interface originates from the loose fusion of the amniotic and the chorionic membranes at the 17th - 20th gestational week [36] and allows the relative sliding of both layers [14] during growth and distension of the membrane [37]. With SHG microscopy was possible to identify the microscopic layers of the FM described in the literature [9, 10, 14].

The interface layer consistently shows an altered collagen structure in ZAM and in C tissue as compared with R samples, corresponding to a significantly increased image entropy. The fibroblast layer shows similar alterations in both tissues, whereas changes in the reticular layer were observed only in the cervical region. These results indicate that mechanical loading of FM in the cervical region in late pregnancy contributes to the alteration of the interface between amnion and chorion, whereas mainly biochemical factors [19, 20, 21] might cause changes in the reticular layer, which seemed unaffected by cyclic loading. This observation indicates a progressive deterioration of the amnion-chorion interface with repeated mechanical loading, which might cause a toughness reduction as observed in previous macroscopic experiments [38, 29]. It should be noted that cyclic experiments were performed under conditions not preserving cell viability. The cellular response to repeated loading, affecting membranes microstructure, was thus not active in these experiments. Future measurements will consider applying long term
cyclic loading in a controlled environment which ensures cell viability. Observation of the
amnion, separated from the chorion, with optimized acquisition settings is expected to yield
increased resolution of second harmonic generation images, so that microstructural changes in
ZAM and associated with cyclic loading might be detected also in the compact layer and
compared with the reflected tissue.

The thickness of the collagenous layers was extracted for each sample at 0% of deformation. The
total thickness was not reported because of the high variability in the local parameter associated
with the unevenness of the decidua attached to the FM. Placing the amnion upwards and imaging
from the top of the samples reduce the related loss of resolution with depth in the collagenous
layers. Thickness values of the reflected FM are consistent with the values reported in literature
[2, 16, 21, 39, 40]. The increased thickness of the ZAM is due to a swollen spongy layer [18, 41]
and is statistically significant. The histological sections confirmed this finding along with the
reduced thickness of the cellular layer as reported in literature [16, 41].

The visualization of the microstructure under stretching brings new information for the
understanding of mechanisms underlying the deformation behaviour of FM. Collagen bundles are
randomly oriented in the initial configuration (0%) and show a coiled structure in C tissue, which
already underwent repeated biaxial stretching, and in ZAM. With deformation, bundles straighten
and align in the stretching direction, showing a large reorientation of collagen already at modest
strain. This mechanism is linked with a very strong transversal contraction of amnion [42] and
induces anisometry and compaction of nuclei, as visible in all images at 40% strain. Fibre
reorientation in uniaxial configuration was recently shown to be key in providing increased
toughness of fibrous tissues with defects [43], thus reducing the risk of rupture.

In conclusion, the SHG microscopy was successfully applied to normal and altered tissue of FMs
and microstructural parameters could be determined for hydrated and untreated samples.
Repeated mechanical loading showed to primarily affect the interface layer between amnion and chorion. Morphological alterations of the foetal membrane over the cervical region might be associated with mechanical loading in addition to biochemical factors. The deformation behaviour of FM microstructure was investigated for the first time combining SHG with an in situ stretching device. Future works will exploit this powerful tool to investigate microstructural response of intact foetal membrane and amnion during cyclic loading, both in biaxial and uniaxial stress state, and quantify collagen and cellular local deformation.

Acknowledgment

The authors are grateful to the Swiss National Science Foundation (SNSF) for financial support (Project number: 205321-134803/1 and 32003B-124925/1) and to the team of Prof. Stahel (Seminar for Statistic, ETH Zurich) for statistical advice. The authors would like to thank Charlotte Burger and Theresa Lehmann (Institute of Anatomy, University of Zurich) for providing the histological sections and Raoul Hopf for the development of the stretching device.
References

[38] Arikat S, Novince RW, Mercer BM, Kumar D, Fox JM, Mansour JM, et al. Separation of amnion from choriodecidua is an integral event to the rupture of normal term fetal membranes and constitutes a significant component of the work required. Am J Obstet Gynecol 2006;194:211-7.

Figure 1:
Samples procurement and testing: a) foetal membrane with harvested samples (R: reflected membrane, ZAM: zone of altered morphology); b) inflation device with a cyclically stretched sample (C) (arrow: inflating cylinder, arrow head: upper chamber filled with Ringer’s solution); c) multiphoton microscope (arrow: objective) with in-situ stretching device (arrow head).

Figure 2:
Microstructure of a representative R sample at 0%, 20% and 40% deformation. A 2D image is shown for each characteristic layer: collagen imaged by second harmonic generation (green) and nuclei by fluorescence (blue). Scale bar: 50 µm.

Figure 3:
Histological sections of R (A, B), ZAM (C) and C (D). Resorcin fuchsin staining (A): elastin fibres (arrow heads). Hematoxyline and eosine staining (B, C, D): collagenous layer (continuous arrow), cellular layer (dotted arrow). Scale bar: 100 µm.

Figure 4:
Microstructure of a representative ZAM sample at 0%, 20% and 40% deformation. A 2D image is shown for each characteristic layer: collagen imaged by second harmonic generation (green) and nuclei by fluorescence (blue). Scale bar: 50 µm.

Figure 5:
Microstructure of a representative C sample at 0%, 20% and 40% deformation. A 2D image is shown for each characteristic layer: collagen imaged by second harmonic generation (green) and nuclei by fluorescence (blue). Scale bar: 50 µm.

Figure 6:
Representative images of spongy layer at 0% deformation in R, ZAM and C samples. A 2D image is shown for each foetal membrane (FM): collagen imaged by second harmonic generation in green (scale bar: 50 µm). The image entropy of each group is reported as mean ± standard deviation (* p<0.05 compared to R).
<table>
<thead>
<tr>
<th></th>
<th>0%</th>
<th>20%</th>
<th>40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amniotic Epithelium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compact Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibroblast Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spongy Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reticular Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trophoblast Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>0%</td>
<td>20%</td>
<td>40%</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Amniotic Epithelium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compact Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibroblast Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spongy Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reticular Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trophoblast Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>0%</td>
<td>20%</td>
<td>40%</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Amniotic Epithelium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compact Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibroblast Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spongy Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reticular Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trophoblast Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>ZAM</td>
<td>C</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>FM 1</td>
<td>![Image](6.19 ± 0.23 *Image)</td>
<td>![Image](6.08 ± 0.26 *Image)</td>
<td>![Image](6.19 ± 0.23 *Image)</td>
</tr>
<tr>
<td>FM 2</td>
<td>![Image](5.63 ± 0.27)</td>
<td>![Image](6.08 ± 0.26 *Image)</td>
<td>![Image](6.19 ± 0.23 *Image)</td>
</tr>
<tr>
<td>FM 3</td>
<td>![Image](5.63 ± 0.27)</td>
<td>![Image](6.08 ± 0.26 *Image)</td>
<td>![Image](6.19 ± 0.23 *Image)</td>
</tr>
<tr>
<td>FM 4</td>
<td>![Image](5.63 ± 0.27)</td>
<td>![Image](6.08 ± 0.26 *Image)</td>
<td>![Image](6.19 ± 0.23 *Image)</td>
</tr>
<tr>
<td>FM 5</td>
<td>![Image](5.63 ± 0.27)</td>
<td>![Image](6.08 ± 0.26 *Image)</td>
<td>![Image](6.19 ± 0.23 *Image)</td>
</tr>
<tr>
<td>FM 6</td>
<td>![Image](5.63 ± 0.27)</td>
<td>![Image](6.08 ± 0.26 *Image)</td>
<td>![Image](6.19 ± 0.23 *Image)</td>
</tr>
<tr>
<td>FM 7</td>
<td>![Image](5.63 ± 0.27)</td>
<td>![Image](6.08 ± 0.26 *Image)</td>
<td>![Image](6.19 ± 0.23 *Image)</td>
</tr>
<tr>
<td>FM 8</td>
<td>![Image](5.63 ± 0.27)</td>
<td>![Image](6.08 ± 0.26 *Image)</td>
<td>![Image](6.19 ± 0.23 *Image)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Image Entropy</th>
<th>R</th>
<th>ZAM</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.63 ± 0.27</td>
<td>6.08 ± 0.26 *</td>
<td>6.19 ± 0.23 *</td>
<td></td>
</tr>
</tbody>
</table>