UZH-Logo

Maintenance Infos

Review of optical-based remote sensing for plant trait mapping


Homolová, Lucie; Malenovský, Zbyněk; Clevers, Jan G P W; García-Santos, Glenda; Schaepman, Michael E (2013). Review of optical-based remote sensing for plant trait mapping. Ecological Complexity, 15:1-16.

Abstract

Plant trait data have been used in various studies related to ecosystem functioning, community ecology, and assessment of ecosystem services. Evidences are that plant scientists agree on a set of key plant traits, which are relatively easy to measure and have a stable and strong predictive response to ecosystem functions. However, the field measurements of plant trait data are still limited to small area, to a certain moment in time and to certain number of species only. Therefore, remote sensing (RS) offers potential to complement or even replace field measurements of some plant traits. It offers instantaneous spatially contiguous information, covers larger areas and in case of satellite observations profits from their revisit capacity.
In this review, we first introduce RS concepts of light–vegetation interactions, RS instruments for vegetation studies, RS methods, and scaling between field and RS observations. Further we discuss in detail current achievements and challenges of optical RS for mapping of key plant traits. We concentrate our discussion on three categorical plant traits (plant growth and life forms, flammability properties and photosynthetic pathways and activity) and on five continuous plant traits (plant height, leaf phenology, leaf mass per area, nitrogen and phosphorous concentration or content). We review existing literature to determine the retrieval accuracy of the continuous plant traits. The relative estimation error using RS ranged between 10% and 45% of measured mean value, i.e. around 10% for plant height of tall canopies, 20% for plant height of short canopies, 15% for plant nitrogen, 25% for plant phosphorus content/concentration, and 45% for leaf mass per area estimates.
The potential of RS to map plant traits is particularly high when traits are related to leaf biochemistry, photosynthetic processes and canopy structure. There are also other plant traits, i.e. leaf chlorophyll content, water content and leaf area index, which can be retrieved from optical RS well and can be of importance for plant scientists.
We underline the need that future assessments of ecosystem functioning using RS should require comprehensive and integrated measurements of various plant traits together with leaf and canopy spectral properties. By doing so, the interplay between plant structural, physiological, biochemical, phenological and spectral properties can be better understood.

Abstract

Plant trait data have been used in various studies related to ecosystem functioning, community ecology, and assessment of ecosystem services. Evidences are that plant scientists agree on a set of key plant traits, which are relatively easy to measure and have a stable and strong predictive response to ecosystem functions. However, the field measurements of plant trait data are still limited to small area, to a certain moment in time and to certain number of species only. Therefore, remote sensing (RS) offers potential to complement or even replace field measurements of some plant traits. It offers instantaneous spatially contiguous information, covers larger areas and in case of satellite observations profits from their revisit capacity.
In this review, we first introduce RS concepts of light–vegetation interactions, RS instruments for vegetation studies, RS methods, and scaling between field and RS observations. Further we discuss in detail current achievements and challenges of optical RS for mapping of key plant traits. We concentrate our discussion on three categorical plant traits (plant growth and life forms, flammability properties and photosynthetic pathways and activity) and on five continuous plant traits (plant height, leaf phenology, leaf mass per area, nitrogen and phosphorous concentration or content). We review existing literature to determine the retrieval accuracy of the continuous plant traits. The relative estimation error using RS ranged between 10% and 45% of measured mean value, i.e. around 10% for plant height of tall canopies, 20% for plant height of short canopies, 15% for plant nitrogen, 25% for plant phosphorus content/concentration, and 45% for leaf mass per area estimates.
The potential of RS to map plant traits is particularly high when traits are related to leaf biochemistry, photosynthetic processes and canopy structure. There are also other plant traits, i.e. leaf chlorophyll content, water content and leaf area index, which can be retrieved from optical RS well and can be of importance for plant scientists.
We underline the need that future assessments of ecosystem functioning using RS should require comprehensive and integrated measurements of various plant traits together with leaf and canopy spectral properties. By doing so, the interplay between plant structural, physiological, biochemical, phenological and spectral properties can be better understood.

Citations

39 citations in Web of Science®
40 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 13 Nov 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2013
Deposited On:13 Nov 2013 16:07
Last Modified:05 Apr 2016 17:08
Publisher:Elsevier
ISSN:1476-945X
Publisher DOI:https://doi.org/10.1016/j.ecocom.2013.06.003

Download

[img]
Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 714kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations