This paper deals with the formulation of a semi-intrusive (SI) method allowing the computation of statistics of linear and non linear PDEs solutions. This method shows to be very efficient to deal with probability density function of whatsoever form, long-term integration and discontinuities in stochastic space. Given a stochastic PDE where randomness is defined on Ω, starting from (i) a description of the solution in term of a space variables, (ii) a numerical scheme defined for any event ω ∈ Ω and (iii) a (family) of random variables that may be correlated, the solution is numerically described by its conditional expectancies of point values or cell averages and its evaluation constructed from the deterministic scheme. One of the tools is a tessellation of the random space as in finite volume methods for the space variables. Then, using these conditional expectancies and the geometrical description of the tessellation, a piecewise polynomial approximation in the random variables is computed using a reconstruction method that is standard for high order finite volume space, except that the measure is no longer the standard Lebesgue measure but the probability measure. This reconstruction is then used to formulate a scheme on the numerical approximation of the solution from the deterministic scheme. This new approach is said semi-intrusive because it requires only a limited amount of modification in a deterministic solver to quantify uncertainty on the state when the solver includes uncertain variables. The effectiveness of this method is illustrated for a modified version of Kraichnan-Orszag three-mode problem where a discontinuous pdf is associated to the stochastic variable, and for a nozzle flow with shocks. The results have been analyzed in terms of accuracy and probability measure flexibility. Finally, the importance of the probabilistic reconstruction in the stochastic space is shown up on an example where the exact solution is computable, the viscous Burgers equation.

Abfrall, Rémi; Congedo, Pietro Marco (2013). *A semi-intrusive deterministic approach to uncertainty quantification in non-linear fluid flow problems.* Journal of Computational Physics, 235:828-845.

## Abstract

This paper deals with the formulation of a semi-intrusive (SI) method allowing the computation of statistics of linear and non linear PDEs solutions. This method shows to be very efficient to deal with probability density function of whatsoever form, long-term integration and discontinuities in stochastic space. Given a stochastic PDE where randomness is defined on Ω, starting from (i) a description of the solution in term of a space variables, (ii) a numerical scheme defined for any event ω ∈ Ω and (iii) a (family) of random variables that may be correlated, the solution is numerically described by its conditional expectancies of point values or cell averages and its evaluation constructed from the deterministic scheme. One of the tools is a tessellation of the random space as in finite volume methods for the space variables. Then, using these conditional expectancies and the geometrical description of the tessellation, a piecewise polynomial approximation in the random variables is computed using a reconstruction method that is standard for high order finite volume space, except that the measure is no longer the standard Lebesgue measure but the probability measure. This reconstruction is then used to formulate a scheme on the numerical approximation of the solution from the deterministic scheme. This new approach is said semi-intrusive because it requires only a limited amount of modification in a deterministic solver to quantify uncertainty on the state when the solver includes uncertain variables. The effectiveness of this method is illustrated for a modified version of Kraichnan-Orszag three-mode problem where a discontinuous pdf is associated to the stochastic variable, and for a nozzle flow with shocks. The results have been analyzed in terms of accuracy and probability measure flexibility. Finally, the importance of the probabilistic reconstruction in the stochastic space is shown up on an example where the exact solution is computable, the viscous Burgers equation.

## Citations

## Altmetrics

## Downloads

## Additional indexing

Item Type: | Journal Article, refereed, original work |
---|---|

Communities & Collections: | 07 Faculty of Science > Institute of Mathematics |

Dewey Decimal Classification: | 510 Mathematics |

Language: | English |

Date: | 15 February 2013 |

Deposited On: | 21 Nov 2013 09:25 |

Last Modified: | 05 Apr 2016 17:10 |

Publisher: | Elsevier |

ISSN: | 0021-9991 |

Publisher DOI: | https://doi.org/10.1016/j.jcp.2012.07.041 |

## Download

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.

You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.