UZH-Logo

Maintenance Infos

Newly synthesized L-enantiomers of 3'-fluoro-modified beta-2'-deoxyribonucleoside 5'-triphosphates inhibit hepatitis B DNA polymerases but not the five cellular DNA polymerases alpha, beta, gamma, delta, and epsilon nor HIV-1 reverse transcriptase.


von Janta-Lipinski, M; Costisella, B; Ochs, H; Hübscher, U; Hafkemeyer, P; Matthes, E (1998). Newly synthesized L-enantiomers of 3'-fluoro-modified beta-2'-deoxyribonucleoside 5'-triphosphates inhibit hepatitis B DNA polymerases but not the five cellular DNA polymerases alpha, beta, gamma, delta, and epsilon nor HIV-1 reverse transcriptase. Journal of Medicinal Chemistry, 41(12):2040-2046.

Abstract

Novel beta-L-2',3'-dideoxy-3'-fluoro nucleosides were synthesized and further converted to their 5'-triphosphates. Their inhibitory activities against hepatitis B virus (HBV) and duck hepatitis B virus (DHBV) DNA polymerases, human immunodeficiency virus (HIV) reverse transcriptase (RT), and the cellular DNA polymerases alpha, beta, gamma, delta, and epsilon were investigated and compared with those of the corresponding 3'-fluoro-modified beta-d-analogues. The 5'-triphosphates of 3'-deoxy-3'-fluoro-beta-L-thymidine (beta-L-FTTP), 2',3'-dideoxy-3'-fluoro-beta-L-cytidine (beta-L-FdCTP), and 2',3'-dideoxy-3'-fluoro-beta-l-5-methylcytidine (beta-L-FMetdCTP) emerged as effective inhibitors of HBV/DHBV DNA polymerases (IC50 = 0.25-10.4 microM). They were either equally (FTTP) or less (FMetdCTP, FdCTP) effective than their beta-d-counterparts. Also the 5'-triphosphate of beta-L-thymidine (beta-L-TTP) was shown to be a strong inhibitor of these two viral enzymes (IC50 = 0.46/1.0 microM). However, all beta-L-FdNTPs (also beta-L-TTP) were inactive against HIV-RT, a result which contrasts sharply with the high efficiency of the beta-D- FdNTPs against this polymerase. Between the cellular DNA polymerases only the beta and gamma enzymes displayed a critical susceptibility to beta-D-FdNTPs which is largely abolished by the beta-L-enantiomers. These results recommend beta-L-FTdR, beta-L-FCdR, and beta-L-FMetCdR for further evaluation as selective inhibitors of HBV replication at the cellular level.

Novel beta-L-2',3'-dideoxy-3'-fluoro nucleosides were synthesized and further converted to their 5'-triphosphates. Their inhibitory activities against hepatitis B virus (HBV) and duck hepatitis B virus (DHBV) DNA polymerases, human immunodeficiency virus (HIV) reverse transcriptase (RT), and the cellular DNA polymerases alpha, beta, gamma, delta, and epsilon were investigated and compared with those of the corresponding 3'-fluoro-modified beta-d-analogues. The 5'-triphosphates of 3'-deoxy-3'-fluoro-beta-L-thymidine (beta-L-FTTP), 2',3'-dideoxy-3'-fluoro-beta-L-cytidine (beta-L-FdCTP), and 2',3'-dideoxy-3'-fluoro-beta-l-5-methylcytidine (beta-L-FMetdCTP) emerged as effective inhibitors of HBV/DHBV DNA polymerases (IC50 = 0.25-10.4 microM). They were either equally (FTTP) or less (FMetdCTP, FdCTP) effective than their beta-d-counterparts. Also the 5'-triphosphate of beta-L-thymidine (beta-L-TTP) was shown to be a strong inhibitor of these two viral enzymes (IC50 = 0.46/1.0 microM). However, all beta-L-FdNTPs (also beta-L-TTP) were inactive against HIV-RT, a result which contrasts sharply with the high efficiency of the beta-D- FdNTPs against this polymerase. Between the cellular DNA polymerases only the beta and gamma enzymes displayed a critical susceptibility to beta-D-FdNTPs which is largely abolished by the beta-L-enantiomers. These results recommend beta-L-FTdR, beta-L-FCdR, and beta-L-FMetCdR for further evaluation as selective inhibitors of HBV replication at the cellular level.

Citations

20 citations in Web of Science®
23 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Biochemistry and Molecular Biology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:4 June 1998
Deposited On:11 Feb 2008 12:18
Last Modified:05 Apr 2016 12:16
Publisher:American Chemical Society
ISSN:0022-2623
Publisher DOI:10.1021/jm9704210
PubMed ID:9622545

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations