UZH-Logo

Maintenance Infos

Validity of the 3D VECTRA photogrammetric surface imaging system for cranio-maxillofacial anthropometric measurements


Metzler, Philipp; Sun, Yi; Zemann, Wolfgang; Bartella, Alexander; Lehner, Marc; Obwegeser, Joachim Anton; Kruse-Gujer, Astrid L; Lübbers, Heinz-Theo (2014). Validity of the 3D VECTRA photogrammetric surface imaging system for cranio-maxillofacial anthropometric measurements. Oral and Maxillofacial Surgery, 18(3):297-304.

Abstract

PURPOSE: The use of three-dimensional (3D) photography for anthropometric measurements is of increasing interest, especially in the cranio-maxillofacial field. Before standard implementation, accurate determination of the precision and accuracy of each system is mandatory. METHODS: A mannequin head was labelled with 52 landmarks, and 28 three-dimensional images were taken using a commercially available five-pod 3D photosystem (3D VECTRA; Canfield, Fairfield, NJ) in different head positions. Distances between the landmarks were measured manually using a conventional calliper and compared with the digitally calculated distances acquired from labelling by two independent observers. The experimental set-up accounted for clinical circumstances by varying the positioning (vertical, horizontal, sagittal) of the phantom. RESULTS: In the entire calliper measurement data set (n = 410), a significant difference (p = 0.02) between the directly measured and corresponding virtually calculated distances was found. The mean aberration between both modalities covering all data was 7.96 mm. No differences (p = 0.94) between the two groups were found using a cut-off of 10 % (leaving n = 369 distances) due to considerable errors in direct measurements and the necessary manual data translation. The mean diversity of both measurement modalities after cut-off was 1.33 mm (maximum, 6.70 mm). Inter-observer analysis of all 1,326 distances showed no difference (p = 0.99; maximal difference, 0.58 mm) in the digital measurements. CONCLUSION: The precision and accuracy of this five-pod 3D photosystem suggests its suitability for clinical applications, particularly anthropometric studies. Three-hundred-and-sixty degree surface-contour mapping of the craniofacial region within milliseconds is particularly useful in paediatric patients. Proper patient positioning is essential for high-quality imaging.

Abstract

PURPOSE: The use of three-dimensional (3D) photography for anthropometric measurements is of increasing interest, especially in the cranio-maxillofacial field. Before standard implementation, accurate determination of the precision and accuracy of each system is mandatory. METHODS: A mannequin head was labelled with 52 landmarks, and 28 three-dimensional images were taken using a commercially available five-pod 3D photosystem (3D VECTRA; Canfield, Fairfield, NJ) in different head positions. Distances between the landmarks were measured manually using a conventional calliper and compared with the digitally calculated distances acquired from labelling by two independent observers. The experimental set-up accounted for clinical circumstances by varying the positioning (vertical, horizontal, sagittal) of the phantom. RESULTS: In the entire calliper measurement data set (n = 410), a significant difference (p = 0.02) between the directly measured and corresponding virtually calculated distances was found. The mean aberration between both modalities covering all data was 7.96 mm. No differences (p = 0.94) between the two groups were found using a cut-off of 10 % (leaving n = 369 distances) due to considerable errors in direct measurements and the necessary manual data translation. The mean diversity of both measurement modalities after cut-off was 1.33 mm (maximum, 6.70 mm). Inter-observer analysis of all 1,326 distances showed no difference (p = 0.99; maximal difference, 0.58 mm) in the digital measurements. CONCLUSION: The precision and accuracy of this five-pod 3D photosystem suggests its suitability for clinical applications, particularly anthropometric studies. Three-hundred-and-sixty degree surface-contour mapping of the craniofacial region within milliseconds is particularly useful in paediatric patients. Proper patient positioning is essential for high-quality imaging.

Citations

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic for Cranio-Maxillofacial Surgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:September 2014
Deposited On:29 Nov 2013 13:03
Last Modified:05 Apr 2016 17:11
Publisher:Springer
ISSN:1865-1550
Publisher DOI:https://doi.org/10.1007/s10006-013-0404-7
PubMed ID:23559195

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations