UZH-Logo

Maintenance Infos

Homocysteine plasma levels in patients treated with antiepileptic drugs depend on folate and vitamin B12 serum levels, but not on genetic variants of homocysteine metabolism


Semmler, A; Moskau-Hartmann, S; Stoffel-Wagner, B; Elger, C E; Linnebank, M (2013). Homocysteine plasma levels in patients treated with antiepileptic drugs depend on folate and vitamin B12 serum levels, but not on genetic variants of homocysteine metabolism. Clinical Chemistry and Laboratory Medicine, 51(3):665-669.

Abstract

BACKGROUND: Antiepileptic drugs (AEDs) are commonly used in the treatment of epilepsy, psychiatric diseases and pain disorders. Several of these drugs influence blood levels of folate and vitamin B12 and, consequently, homocysteine. This may be relevant for AED effects and side effects. However, not only folate and vitamin B12, but also genetic variants modify homocysteine metabolism. Here, we aimed to determine whether there is a pharmacogenetic interaction between folate, vitamin B12 and genetic variants and homocysteine plasma level in AED-treated patients. METHODS: In this mono-center study, we measured homocysteine, folate and vitamin B12 plasma levels in a population of 498 AED-treated adult patients with epilepsy. In addition, we analyzed the genotypes of seven common genetic variants of homocysteine metabolism: methylenetetrahydrofolate reductase (MTHFR) c.677C>T and c.1298A>C, methionine synthase (MTR) c.2756A>G, dihydrofolate reductase (DHFR) c.594+59del19bp, cystathionine β-synthase (CBS) c.844_855ins68, transcobalamin 2 (TC2) c.776C>G and methionine synthase reductase (MTRR) c.66G>A. RESULTS: On multivariate logistic regression, folate and vitamin B12 levels, but none of the genetic variants, were predictive for homocysteine levels. CONCLUSIONS: These data suggest that, in AED-treated patients, folate and vitamin B12 play important roles in the development of hyperhomocysteinemia, whereas genetic variants of homocysteine metabolism do not and thus do not contribute to the risk of developing hyperhomocysteinemia during AED treatment.

Abstract

BACKGROUND: Antiepileptic drugs (AEDs) are commonly used in the treatment of epilepsy, psychiatric diseases and pain disorders. Several of these drugs influence blood levels of folate and vitamin B12 and, consequently, homocysteine. This may be relevant for AED effects and side effects. However, not only folate and vitamin B12, but also genetic variants modify homocysteine metabolism. Here, we aimed to determine whether there is a pharmacogenetic interaction between folate, vitamin B12 and genetic variants and homocysteine plasma level in AED-treated patients. METHODS: In this mono-center study, we measured homocysteine, folate and vitamin B12 plasma levels in a population of 498 AED-treated adult patients with epilepsy. In addition, we analyzed the genotypes of seven common genetic variants of homocysteine metabolism: methylenetetrahydrofolate reductase (MTHFR) c.677C>T and c.1298A>C, methionine synthase (MTR) c.2756A>G, dihydrofolate reductase (DHFR) c.594+59del19bp, cystathionine β-synthase (CBS) c.844_855ins68, transcobalamin 2 (TC2) c.776C>G and methionine synthase reductase (MTRR) c.66G>A. RESULTS: On multivariate logistic regression, folate and vitamin B12 levels, but none of the genetic variants, were predictive for homocysteine levels. CONCLUSIONS: These data suggest that, in AED-treated patients, folate and vitamin B12 play important roles in the development of hyperhomocysteinemia, whereas genetic variants of homocysteine metabolism do not and thus do not contribute to the risk of developing hyperhomocysteinemia during AED treatment.

Citations

5 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

51 downloads since deposited on 03 Dec 2013
23 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2013
Deposited On:03 Dec 2013 15:48
Last Modified:05 Apr 2016 17:12
Publisher:De Gruyter
ISSN:1434-6621
Publisher DOI:https://doi.org/10.1515/cclm-2012-0580
PubMed ID:23382314

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 287kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations