UZH-Logo

Maintenance Infos

Two-dimensional infrared spectroscopy of photoswitchable peptides


Hamm, P; Helbing, J; Bredenbeck, J (2008). Two-dimensional infrared spectroscopy of photoswitchable peptides. Annual Review of Physical Chemistry, 59:291-317.

Abstract

We present a detailed discussion of the complimentary fields of the application of two-dimensional infrared (2D-IR) spectroscopy in comparison with two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy. Transient 2D-IR (T2D-IR) spectroscopy of nonequilibrium ensembles is probably one of the most promising strengths of 2D-IR spectroscopy, as the possibilities of 2D-NMR spectroscopy are limited in this regime. T2D-IR spectroscopy uniquely combines ultrafast time resolution with microscopic structural resolution. In this article we summarize our recent efforts to investigate the ultrafast structural dynamics of small peptides, such as the unfolding of peptide secondary structure motifs. The work requires two ingredients: 2D-IR spectroscopy and the possibility of triggering a structural transition of a peptide on an ultrafast timescale using embedded or intrinsic photoswitches. Several photoswitches have been tested, and we discuss our progress in merging these two pathways of research.

Abstract

We present a detailed discussion of the complimentary fields of the application of two-dimensional infrared (2D-IR) spectroscopy in comparison with two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy. Transient 2D-IR (T2D-IR) spectroscopy of nonequilibrium ensembles is probably one of the most promising strengths of 2D-IR spectroscopy, as the possibilities of 2D-NMR spectroscopy are limited in this regime. T2D-IR spectroscopy uniquely combines ultrafast time resolution with microscopic structural resolution. In this article we summarize our recent efforts to investigate the ultrafast structural dynamics of small peptides, such as the unfolding of peptide secondary structure motifs. The work requires two ingredients: 2D-IR spectroscopy and the possibility of triggering a structural transition of a peptide on an ultrafast timescale using embedded or intrinsic photoswitches. Several photoswitches have been tested, and we discuss our progress in merging these two pathways of research.

Citations

109 citations in Web of Science®
110 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

413 downloads since deposited on 16 Jan 2009
99 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2008
Deposited On:16 Jan 2009 16:34
Last Modified:05 Apr 2016 12:44
Publisher:Annual Reviews
ISSN:0066-426X
Additional Information:Posted with permission from the Annual Review of Physical Chemistry, Volume 59 © 2008 by Annual Reviews, http://www.annualreviews.org
Publisher DOI:https://doi.org/10.1146/annurev.physchem.59.032607.093757
PubMed ID:17988202

Download

[img]
Preview
Filetype: PDF
Size: 1MB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 2MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations