UZH-Logo

Maintenance Infos

From particle self-assembly to functionalized sub-micron protein patterns


Blättler, T M; Binkert, A; Zimmermann, M; Textor, M; Vörös, J; Reimhult, E (2008). From particle self-assembly to functionalized sub-micron protein patterns. Nanotechnology, 19(7):075301-075311.

Abstract

Biologically relevant nanopatterns are useful platforms to address fundamental questions, for example, regarding protein–protein and cell–protein interactions. For the creation of nanopatterns, complex and expensive instrumentation is often needed. We present a simple but versatile patterning method using a combination of particle and subsequent molecular self-assembly to produce ordered structures in the micron and sub-micron range. Polystyrene particles were, in a first step, assembled via dip-coating or dried in a drying cell. Silicon wafers and glass slides coated with SiO2 and a top layer of 11 nm of TiO2 were used as substrates. Large hexagonally ordered particle monolayers were formed with high reproducibility. These were subsequently shrunk in a controlled manner by exposure to a O2/N2 plasma and subsequently used as etching masks to transfer the particle pattern onto the substrate, creating TiO2 features in an SiO2 background. After removing the mask the oxide contrast was translated in three simple dip-and-rinse steps into a biochemical contrast of protein-coated features in an inert background. In short, alkane phosphates were first selectively adsorbed to the TiO2 features. Then the SiO2 background was backfilled using poly(L-lysine)–graft-poly(ethylene glycol) and finally streptavidin was adsorbed to the hydrophobic alkane phosphate SAMs, allowing subsequent binding and hybridization of biotinylated DNA.

Abstract

Biologically relevant nanopatterns are useful platforms to address fundamental questions, for example, regarding protein–protein and cell–protein interactions. For the creation of nanopatterns, complex and expensive instrumentation is often needed. We present a simple but versatile patterning method using a combination of particle and subsequent molecular self-assembly to produce ordered structures in the micron and sub-micron range. Polystyrene particles were, in a first step, assembled via dip-coating or dried in a drying cell. Silicon wafers and glass slides coated with SiO2 and a top layer of 11 nm of TiO2 were used as substrates. Large hexagonally ordered particle monolayers were formed with high reproducibility. These were subsequently shrunk in a controlled manner by exposure to a O2/N2 plasma and subsequently used as etching masks to transfer the particle pattern onto the substrate, creating TiO2 features in an SiO2 background. After removing the mask the oxide contrast was translated in three simple dip-and-rinse steps into a biochemical contrast of protein-coated features in an inert background. In short, alkane phosphates were first selectively adsorbed to the TiO2 features. Then the SiO2 background was backfilled using poly(L-lysine)–graft-poly(ethylene glycol) and finally streptavidin was adsorbed to the hydrophobic alkane phosphate SAMs, allowing subsequent binding and hybridization of biotinylated DNA.

Citations

23 citations in Web of Science®
26 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2008
Deposited On:06 Jan 2009 14:11
Last Modified:05 Apr 2016 12:44
Publisher:Institute of Physics Publishing
ISSN:0957-4484
Publisher DOI:https://doi.org/10.1088/0957-4484/19/7/075301

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations