Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Blättler, T M; Binkert, A; Zimmermann, M; Textor, M; Vörös, J; Reimhult, E (2008). From particle self-assembly to functionalized sub-micron protein patterns. Nanotechnology, 19(7):075301-075311.

Full text not available from this repository.

View at publisher


Biologically relevant nanopatterns are useful platforms to address fundamental questions, for example, regarding protein–protein and cell–protein interactions. For the creation of nanopatterns, complex and expensive instrumentation is often needed. We present a simple but versatile patterning method using a combination of particle and subsequent molecular self-assembly to produce ordered structures in the micron and sub-micron range. Polystyrene particles were, in a first step, assembled via dip-coating or dried in a drying cell. Silicon wafers and glass slides coated with SiO2 and a top layer of 11 nm of TiO2 were used as substrates. Large hexagonally ordered particle monolayers were formed with high reproducibility. These were subsequently shrunk in a controlled manner by exposure to a O2/N2 plasma and subsequently used as etching masks to transfer the particle pattern onto the substrate, creating TiO2 features in an SiO2 background. After removing the mask the oxide contrast was translated in three simple dip-and-rinse steps into a biochemical contrast of protein-coated features in an inert background. In short, alkane phosphates were first selectively adsorbed to the TiO2 features. Then the SiO2 background was backfilled using poly(L-lysine)–graft-poly(ethylene glycol) and finally streptavidin was adsorbed to the hydrophobic alkane phosphate SAMs, allowing subsequent binding and hybridization of biotinylated DNA.


23 citations in Web of Science®
21 citations in Scopus®
Google Scholar™


Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Deposited On:06 Jan 2009 14:11
Last Modified:05 Apr 2016 12:44
Publisher:Institute of Physics Publishing
Publisher DOI:10.1088/0957-4484/19/7/075301

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page