Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation

Jia, Jizeng; Zhao, Shancen; et al

Abstract: About 8,000 years ago in the Fertile Crescent, a spontaneous hybridization of the wild diploid grass Aegilops tauschii (2n = 14; DD) with the cultivated tetraploid wheat Triticum turgidum (2n = 4x = 28; AABB) resulted in hexaploid wheat (T. aestivum; 2n = 6x = 42; AABBD). Wheat has since become a primary staple crop worldwide as a result of its enhanced adaptability to a wide range of climates and improved grain quality for the production of baker’s flour. Here we describe sequencing the Ae. tauschii genome and obtaining a roughly 90-fold depth of short reads from libraries with various insert sizes, to gain a better understanding of this genetically complex plant. The assembled scaffolds represented 83.4% of the genome, of which 65.9% comprised transposable elements. We generated comprehensive RNA-Seq data and used it to identify 43,150 protein-coding genes, of which 30,697 (71.1%) were uniquely anchored to chromosomes with an integrated high-density genetic map. Whole-genome analysis revealed gene family expansion in Ae. tauschii of agronomically relevant gene families that were associated with disease resistance, abiotic stress tolerance and grain quality. This draft genome sequence provides insight into the environmental adaptation of bread wheat and can aid in defining the large and complicated genomes of wheat species.

DOI: https://doi.org/10.1038/nature12028

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-87820
Published Version

Originally published at:
DOI: https://doi.org/10.1038/nature12028
Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation

Jizeng Jia1*, Shancen Zhao2,3*, Xiuying Kong1*, Yingrui Li2*, Guanyao Zhao1*, Weiming He2*, Rudi Appels4*, Matthias Pfeifer5, Yong Tao2, Xueyong Zhang1, Ruilian Jing1, Chi Zhang2, Youzi Ma1, Lifeng Gao2, Chuan Gao2, Manuel Spannagl6, Klaus F. X. Mayer2, Dong Li2, Shengkai Pan2, Fengya Zheng2,3, Qiuju Xia2, Peng Lu2, Junyi Wang2, Klaus F. X. Mayer2, Dong Li2, Shengkai Pan2, Fengya Zheng2,3, Qiuju Xia2, Peng Lu2, Junyi Wang2,*.

About 8,000 years ago in the Fertile Crescent, a spontaneous hybridization of the wild diploid grass Aegilops tauschii (2n = 14; DD) with the cultivated tetraploid wheat Triticum turgidum (2n = 4x = 28; AABB) resulted in hexaploid wheat (T. aestivum; 2n = 6x = 42; AABBDD)1,2. Wheat has since become a staple crop worldwide as a result of its enhanced adaptability to a wide range of climates and improved grain quality for the production of baker’s flour2. Here we describe sequencing the Aegilops tauschii genome and obtaining a roughly 90-fold depth of short reads from libraries with various insert sizes, to gain a better understanding of this genetically complex plant. The assembled scaffolds represented 83.4% of the genome, of which 65.9% comprised transposable elements. We generated comprehensive RNA-Seq data and used it to identify 43,150 protein-coding genes, of which 30,697 (71.1%) were uniquely anchored to chromosomes with an integrated high-density genetic map. Whole-genome analysis revealed gene family expansion in Aegilops tauschii of agronomically relevant gene families that were associated with disease resistance, abiotic stress tolerance and grain quality. This draft genome sequence provides insight into the environmental adaptation of bread wheat and can aid in defining the large and complicated genomes of wheat species.

We selected Aegilops tauschii accession AL8/78 for genome sequencing because it has been extensively characterized genetically (Supplementary Information). Using a whole genome shotgun strategy, we generated 398 Gb of high-quality reads from 45 libraries with insert sizes ranging from 200 bp to 20 kb (Supplementary Information). A hierarchical, iterative assembly of short reads employing the parallelized sequence assembler SOAPdenovo2 achieved contigs with an N50 length (minimum length of contigs representing 50% of the assembly) of 4,512 bp (Table 1). Paired-end information combined with an additional 18.4 Gb of Roche/454 long-read sequences was used sequentially to generate 4,23-Gb scaffolds (83.4% were non-gapped contiguous sequences) with an N50 length of 57.6 kb (Supplementary Information). The assembly represented 97% of the 43.6-Gb genome as estimated by K-mer analysis (Supplementary Information). We also obtained 13,185 Aegilops tauschii expressed sequence tag (EST) sequences using Sanger sequencing, of which 11,998 (91%) could be mapped to the scaffolds with more than 90% coverage (Supplementary Information).

To aid in gene identification, we performed RNA-Seq (53.2 Gb for a 117-Mb transcriptome assembly) on 23 libraries representing eight tissue including pistil, root, seed, spike, stem, stem, leaf and sheath (Supplementary Information). Using both evidence-based and de novo gene predictions, we identified 34,498 high-confidence protein-coding loci. FGENESH4 and GeneID models were supported by a 60% overlap with either our ESTs and RNA-Seq reads, or with homologous proteins. More than 76% of the gene models had a significant match (E value < 10^-7; alignment length ≥ 60%) in the GenBank non-redundant database. An additional 8,652 loci were predicted as low-confidence genes as a result of incomplete gene structure or limited expression data support (Supplementary Information). We also predicted a total of 2,505 transfer RNA, 358 ribosomal RNA, 35 small nuclear RNA and 78 small nucleolar RNA genes (Supplementary Information).

We found that more than 65.9% of the Aegilops tauschii genome was composed of different transposable element (TE) families (Supplementary Information). About 5 × 10^7 Illumina reads of Aegilops tauschii were mapped to hexaploid wheat repetitive sequences and we found that a comparable percentage of reads (more than 62.3%) could be classified as part of a TE sequence (Supplementary Information). The estimate is similar to that derived from a previous survey of Roche/454 sequences5. There were 410 different TE families, of which the 20 most abundant contributed more than 50% of the Aegilops tauschii genome (Supplementary Table 9). A single peak of increased insertion activity was estimated to occur about 3–4 Myr ago by measuring the similarity of the assembled LTR retrotransposons (Supplementary Information), suggesting that the expansion of the Aegilops tauschii genome was relatively recent and coincided with the abrupt climate change during the Pliocene Epoch4.

We constructed a high-density genetic map using an F2 population of 490 individuals derived from a cross between the Aegilops tauschii accessions Y2280 and AL8/78. The map, whose total length was 1059.8 centimorgans (cM), consisted of 151,083 single nucleotide polymorphism (SNP) markers developed by restriction-site-associated DNA (RAD) tag sequencingskin technology (Supplementary Fig. 13). Together with bin-mapped wheat ESTs, SNPs and tags6, the genetic map was used to align 30,303 scaffolds (1.72 Gb; 30,697 genes) to chromosomes (Supplementary Information). The Aegilops tauschii genes and scaffolds were also anchored to barley7 and Brachypodium chro- mosome maps8 (Fig. 1 and Supplementary Fig. 17). Calculation of Ks/Ka ratios (the ratio of non-synonymous substitutions to synonymous substitutions) for pairs of conserved orthologous genes showed that the average values between Aegilops tauschii and barley (20,892 genes), Brachypodium (17,231 genes), rice (16,370 genes) and sorghum (16,823 genes) were 0.2214, 0.1888, 0.1736 and 0.1726, respectively, respectively.
which indicated that most gene lineages evolved under purifying selection in *Ae. tauschii*. A total of 628 genes exhibited \(K_s/K_a \) ratios of more than 0.8 when compared with the other four species, indicating potential positive selection (innermost circle of Fig. 1). These genes were assigned to a wide range of molecular functions by using Gene Ontology (GO) analyses (Supplementary Table 14).

Ae. tauschii proteins were clustered with those of *Brachypodium*, rice, sorghum and barley (full-length complementary DNAs), and formed 23,202 orthologous groups (at least two members; Supplementary Information). In total, we identified 11,289 (*barley/Ae. tauschii*) and 14,675 (*Brachypodium/Ae. tauschii*) orthologous gene pairs. We found that 8,443 gene groups contained sequences from all five grass genomes, and 234 were specific to Pooideae (*Ae. tauschii*, *Brachypodium* and barley) and 587 were specific to Triticeae (*Ae. tauschii* and barley) (Fig. 2a). Enrichment analyses of both Pfam domains and GO terms showed that genes encoding NBS-LRR (nucleotide-binding-site leucine-rich repeat) proteins were over-represented in *Ae. tauschii* relative to *Brachypodium* and rice\(^{11,12}\) (Supplementary Information). These observations are consistent with those reported in a recent study\(^9\). A total of 1,219 *Ae. tauschii* genes were similar to NBS-LRR genes (R gene analogues (RGAs))\(^{11,14}\) (Supplementary Information). This number is double that in rice (623) and sixfold that in maize (216)\(^{15}\), indicating that the RGA family has substantially expanded in *Ae. tauschii*. We mapped 878 RGAs (72%) to specific positions across wheat chromosomes by using molecular marker–genome sequence alignment, which provides a large number of potential disease resistance loci for further investigation.

We found more genes for the cytochrome P450 family in *Ae. tauschii* (485) than in sorghum (365), rice (333), *Brachypodium* (262) or maize (261). This family of genes is important for abiotic stress response, especially in biosynthetic and detoxification pathways\(^{15}\). Using 178 manually curated cold-acclimation-related genes such as *TaRAB14* and *TaRAB15* which were found in *Ae. tauschii*, we observed a broad overlap between these genes and the 234 specific barley genes. We mapped these genes to *Ae. tauschii* chromosomes and further investigated their potential orthologous relationships in *Brachypodium* and *barley* (Fig. 2b).

Table 1 Overall statistics of sequencing and genome assembly

<table>
<thead>
<tr>
<th>Assembly process</th>
<th>Library insert size (bp)</th>
<th>Read length (bp)</th>
<th>Effective data (Gb)</th>
<th>N50 (bp)</th>
<th>N50 number</th>
<th>Total length (Mb)</th>
<th>Gaps (Mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contig assembly</td>
<td>167–764</td>
<td>44, 75, 100, 150</td>
<td>270</td>
<td>4,521</td>
<td>179,145</td>
<td>3,528</td>
<td>~600*</td>
</tr>
<tr>
<td>Scaffolding</td>
<td>2,000–20,000</td>
<td>44, 49, 90</td>
<td>128</td>
<td>58,011</td>
<td>19,405</td>
<td>4,244</td>
<td>701</td>
</tr>
<tr>
<td>Gap closure</td>
<td>167–764</td>
<td>44, 75, 100, 150</td>
<td>270</td>
<td>57,585</td>
<td>19,455</td>
<td>4,229</td>
<td>701</td>
</tr>
</tbody>
</table>

Reads from 454 sequencing platform.

Figure 1 | Comparative analysis of *Ae. tauschii* ordered scaffolds versus barley and *Brachypodium*. The inner circle represents the seven *Ae. tauschii* chromosomes scaled according to the genetic map incorporating genome scaffolds. Red points show the \(K_s/K_a \) ratios between anchored *Ae. tauschii* genes and their putative orthologues in *Brachypodium*. Moving outwards, the second circle compares *Ae. tauschii* against the seven barley chromosomes\(^9\). The heatmaps show the density distribution of barley cDNA loci that are aligned with *Ae. tauschii* genes. The outer two circles illustrate *Brachypodium* chromosomes according to conserved synteny with *Ae. tauschii*. The coloured lines below each chromosome identify putative orthologous gene pairs between *Ae. tauschii* genes, barley genes and *Brachypodium* genes.
as the CCAAT-binding factor (CBF) transcription factors, lateembryogenesis-abundant proteins (LEA) and osmoprotectant biosynthesis proteins (Supplementary Information) as queries, we identified 216 cold-related genes in the Ae. tauschii genome, in contrast to 164 genes in Brachypodium, 152 in rice, 159 in sorghum and 148 in maize. Some of these genes were specific to Ae. tauschii or to Pooidaeae, including those encoding ice-recrystallization inhibition protein 1 precursor, DREB2 transcription factor α isoform and cold-responsive LEA/RAB-related COR protein. Expression analysis of RNA-Seq data showed that most of these Ae. tauschii-specific and Pooidaeae-specific genes were constitutively expressed in Ae. tauschii (Supplementary Fig. 23). In addition, 1,489 transcription factors (TFs) in 56 families were identified by using Pfam DNA-binding domains (Supplementary Information). Ae. tauschii had an excess of such TFs as MYB-related genes (103, in contrast with 66 in Brachypodium and 95 in maize), and these are also thought to be involved in various stress responses. The M-type MADS-box genes (58, in contrast with 23 in Brachypodium and 34 in maize) are involved in regulation in plant reproduction (Fig. 2b and Supplementary Table 18). ARACNe co-expression analysis using RNA-Seq data predicted an expression network of 1,283 interactions (Supplementary Fig. 25), in which 13 TFs were associated with the expression of drought tolerance genes (Supplementary Table 20).

We predicted a total of 159 (133 families) previously undescribed microRNAs (Supplementary Information), and identified segmental and tandem duplications in 42 members of the miR2118 family that were organized into two groups on 15 scaffolds (Supplementary Fig. 26). The miR399 family, which is involved in the regulation of inorganic phosphate homeostasis in rice, was expanded (20 members in Ae. tauschii, compared with 11 in rice and 10 in maize), and may contribute to the ability of Ae. tauschii to grow in low-nutrient soils. The expansion of the miR2275 family (eight members in Ae. tauschii, compared with two in rice and four in maize) may contribute to the enhanced disease resistance of Ae. tauschii because phased short interfering RNAs initiated by miR2275 have been implicated in these activities.

The Ae. tauschii genome served as the source for many grain quality genes in hexaploid wheat, creating a step improvement in the formation of the elastic dough essential for bread making. Grain quality genes include high-molecular-weight glutenin subunits (HMW-GS), low-molecular-weight glutenin subunits (LMW-GS), grain texture proteins (GSP; puroindolines) and storage protein activator (SPA) storage protein activator (SPA).

We identified two HMW-GS genes, five LMW-GS genes, one Pina gene, two Pinb genes, one GSP gene and one SPA gene in the Ae. tauschii genome sequence (Supplementary Information). As has been shown for the Hardness (Ha) locus, the GSP, Pina and Pinb genes were also organized in a cluster. RNA-Seq analysis showed that these grain quality genes were expressed predominantly in seeds (Supplementary Fig. 29).

The anchoring of more than 40% of the scaffold sequences to four genetic maps and to syntenic regions of other sequenced grass species provided a structural framework for integrating multiple maps by using shared markers (Fig. 1 and Supplementary Information). The co-localization of genes in scaffolds and genetically mapped quantitative trait loci (QTLs) will directly support map-based gene cloning. On chromosome 2D, for example, the locations of 33 QTLs or genes were integrated with scaffold information (http://ccg.murdoch.edu.au/cmap/ccg-live/) (Fig. 3 and Supplementary Information). Alignment of the Ae. tauschii genetic map with the wheat 2D consensus genetic map was unambiguous, with the exception of some single crossovers that were probably due to repetitive elements (dotted lines in Fig. 3). The genome sequence also provided the basis for the identification of more than 860,126 simple sequence repeats (SSRs), with trimers (37.7%) and tetramers (27.5%) as the most abundant SSR types (Supplementary Information). Together with the 711,907 SNPs identified by resequencing a roughly fivefold coverage of a second accession, Y2280 (Supplementary Information), the genomic resources reported here will promote map-based gene cloning and marker-assisted selection in wheat.

With its high base accuracy and nearly complete set of gene sequences, the Ae. tauschii draft genome sequence provides an essential reference for studying D genome diversity by re-sequencing additional accessions. Over the past half century, the introduction of new D genome diversity into synthetic wheat has been a major effort to expand bread wheat genetic diversity and to create environmentally resilient lines. The Ae. tauschii genome sequence should aid in identifying new elite alleles for agriculturally important traits to alleviate the worsening plight of global climate and environment changes.

Figure 2 | Ae. tauschii gene families and transcription factors. a, Distribution of orthologous gene families in Ae. tauschii, Brachypodium, sorghum, rice and barley. The number of gene families is represented in each intersection of the Venn diagram. The first number under the species name indicates the total number of genes annotated for a particular species, and the second indicates the number of genes in groups for that organism. The difference between the two accounts for singleton genes that were not present in any cluster. b, The composition of transcription factors (TFs) in Ae. tauschii and Brachypodium composed of more than 30 members.
We selected *Ae. tauschii* 2n = 14 accession AL8/78 for sequencing. Plants were grown at 25°C in a darkened chamber for two weeks; DNA was extracted from leaf tissue and purified with a standard phenol/chloroform extraction protocol. Sequencing libraries were constructed and sequenced on Illumina next-generation sequencing platforms (GAII and HiSeq2000 (2000)). High-quality reads were assembled with SOAPdenovo2. Repeat sequences were identified by combining de novo approaches and sequence similarity to the nucleotide and protein levels. Gene models were predicted by combining homology-based, de novo and RNA-Seq-based methods. RNA-Seq reads were assembled with CAP3 (ref. 28) and CD-Hit39 and were mapped to the draft genome with TopHat40. See Supplementary Information for details and additional analyses.

Received 28 March 2012; accepted 20 February 2013.
Published online 24 March; corrected online 3 April 2013 (see full-text HTML version for details).

Supplementary Information is available in the online version of the paper.

Acknowledgements We thank J. M. Wan for support and encouragement; J. Dvorak and M. C. Luo for the AL8/78 line; C. Y. Jin, X. Y. Li, L. C. Zhang, L. Pan and J. C. Zhang for critical readings of the manuscript. This work was supported by grants from the National 863 Program (2011ZX08009-001 and 2011ZX08002-001).

Author Information The genome sequence and the annotation are available from the National Centre for Biotechnology Information (NCBI) as BioProject ID PRJNA182898. This Whole Genome Shotgun project is deposited at DDBJ/EMBL/GenBank under accession number AOC000000000. The version described in this paper is the first version, AOC001000000. The Illumina sequencing reads are available in the Sequence Read Archive under accession number SRA030526, RNA-Seq sequences under SRA062662, and resequencing short reads under SRA063175. Genomic data are also available at the Comprehensive Library for Modern Biotechnology (CLiMB) repository under doi:10.5524/100054. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to Ju.W. (wangj@genomics.cn), J.Z.J. (jzia@mail.caas.net.cn), Lo.M. (maolong@caas.net.cn), Z.H.H. (zhhe@public3.bta.net.cn) and Xu.L. (liuxu01@caas.cn).