UZH-Logo

Maintenance Infos

AtABCA9 transporter supplies fatty acids for lipid synthesis to the endoplasmic reticulum


Kim, Sangwoo; Yamaoka, Yasuyo; Ono, Hirofumi; Kim, Hanul; Shim, Donghwan; Maeshima, Masayoshi; Martinoia, Enrico; Cahoon, Edgar B; Nishida, Ikuo; Lee, Youngsook (2013). AtABCA9 transporter supplies fatty acids for lipid synthesis to the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 110(2):773-778.

Abstract

Fatty acids, the building blocks of biological lipids, are synthesized in plastids and then transported to the endoplasmic reticulum (ER) for assimilation into specific lipid classes. The mechanism of fatty acid transport from plastids to the ER has not been identified. Here we report that AtABCA9, an ABC transporter in Arabidopsis thaliana, mediates this transport. AtABCA9 was localized to the ER, and atabca9 null mutations reduced seed triacylglycerol (TAG) content by 35% compared with WT. Developing atabca9 seeds incorporated 35% less (14)C-oleoyl-CoA into TAG compared with WT seeds. Furthermore, overexpression of AtABCA9 enhanced TAG deposition by up to 40%. These data strongly support a role for AtABCA9 as a supplier of fatty acid substrates for TAG biosynthesis at the ER during the seed-filling stage. AtABCA9 may be a powerful tool for increasing lipid production in oilseeds.

Abstract

Fatty acids, the building blocks of biological lipids, are synthesized in plastids and then transported to the endoplasmic reticulum (ER) for assimilation into specific lipid classes. The mechanism of fatty acid transport from plastids to the ER has not been identified. Here we report that AtABCA9, an ABC transporter in Arabidopsis thaliana, mediates this transport. AtABCA9 was localized to the ER, and atabca9 null mutations reduced seed triacylglycerol (TAG) content by 35% compared with WT. Developing atabca9 seeds incorporated 35% less (14)C-oleoyl-CoA into TAG compared with WT seeds. Furthermore, overexpression of AtABCA9 enhanced TAG deposition by up to 40%. These data strongly support a role for AtABCA9 as a supplier of fatty acid substrates for TAG biosynthesis at the ER during the seed-filling stage. AtABCA9 may be a powerful tool for increasing lipid production in oilseeds.

Citations

22 citations in Web of Science®
22 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2013
Deposited On:10 Jan 2014 08:03
Last Modified:05 Apr 2016 17:21
Publisher:National Academy of Sciences
ISSN:0027-8424
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1073/pnas.1214159110
PubMed ID:23269834

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations