UZH-Logo

Maintenance Infos

Miniaturization of two-photon microscopy for imaging in freely moving animals


Helmchen, Fritjof; Denk, Winfried; Kerr, Jason N D (2013). Miniaturization of two-photon microscopy for imaging in freely moving animals. Cold Spring Harbor Protocols, 2013(10):904-913.

Abstract

This article describes the development and application of miniaturized two-photon-excited fluorescence microscopes ("two-photon fiberscopes"). Two-photon fiberscopes have been developed with the aim of enabling high-resolution imaging of neural activity in freely behaving animals. They use fiber optics to deliver laser light for two-photon excitation. Their small front piece typically contains a miniature scanning mechanism and imaging optics. Two-photon fiberscopes can be made sufficiently small and lightweight to be carried by rats and mice and to allow virtually unrestricted movement within a behavioral arena. Typically mounted to the animal's skull above a cranial window, two-photon fiberscopes permit imaging of cells down to at least 250 µm below the brain surface (e.g., in rat neocortex). In freely exploring animals, action-potential-evoked calcium transients can be imaged in individual somata of visual cortex neurons bulk-labeled with a calcium indicator. Two-photon fiberscopes thus enable high-resolution optical recording of neural activity with cellular resolution during natural behaviors.

Abstract

This article describes the development and application of miniaturized two-photon-excited fluorescence microscopes ("two-photon fiberscopes"). Two-photon fiberscopes have been developed with the aim of enabling high-resolution imaging of neural activity in freely behaving animals. They use fiber optics to deliver laser light for two-photon excitation. Their small front piece typically contains a miniature scanning mechanism and imaging optics. Two-photon fiberscopes can be made sufficiently small and lightweight to be carried by rats and mice and to allow virtually unrestricted movement within a behavioral arena. Typically mounted to the animal's skull above a cranial window, two-photon fiberscopes permit imaging of cells down to at least 250 µm below the brain surface (e.g., in rat neocortex). In freely exploring animals, action-potential-evoked calcium transients can be imaged in individual somata of visual cortex neurons bulk-labeled with a calcium indicator. Two-photon fiberscopes thus enable high-resolution optical recording of neural activity with cellular resolution during natural behaviors.

Citations

Altmetrics

Downloads

1 download since deposited on 10 Jan 2014
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Brain Research Institute
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:1 October 2013
Deposited On:10 Jan 2014 09:35
Last Modified:05 Apr 2016 17:22
Publisher:Cold Spring Harbor Laboratory Press
ISSN:1559-6095
Publisher DOI:https://doi.org/10.1101/pdb.top078147
Related URLs:http://www.zora.uzh.ch/54918/
PubMed ID:24086055

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 742kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations