UZH-Logo

Maintenance Infos

Small animal models of experimental obliterative bronchiolitis


Jungraithmayr, Wolfgang; Jang, Jae-Hwi; Schrepfer, Sonja; Inci, Ilhan; Weder, Walter (2013). Small animal models of experimental obliterative bronchiolitis. American Journal of Respiratory Cell and Molecular Biology, 48(6):675-684.

Abstract

Despite significant progress in the treatment of chronic lung allograft rejection, obliterative bronchiolitis (OB) remains the major limitation to long-term survival after lung transplantation. The use of animal models is critical to an understanding of the pathological mechanisms behind OB, and to develop therapeutic strategies for OB. For almost 20 years, the technique of heterotopic tracheal transplantation was the leading experimental model in OB research. To address the need for a more physiologic experimental setup, a variety of small animal models have been proposed during the past two decades, such as the orthotopic tracheal transplantation model or the intrapulmonary trachea implantation model. The recent introduction of the orthotopic lung transplantation model in the mouse fulfilled the criteria for a physiologic lung transplantation setup, and also presents the advantage of being genetically modifiable. Here we review the evolution of OB models and their applications, from their beginning to the rapidly emerging physiologic models of chronic lung allograft rejection.

Despite significant progress in the treatment of chronic lung allograft rejection, obliterative bronchiolitis (OB) remains the major limitation to long-term survival after lung transplantation. The use of animal models is critical to an understanding of the pathological mechanisms behind OB, and to develop therapeutic strategies for OB. For almost 20 years, the technique of heterotopic tracheal transplantation was the leading experimental model in OB research. To address the need for a more physiologic experimental setup, a variety of small animal models have been proposed during the past two decades, such as the orthotopic tracheal transplantation model or the intrapulmonary trachea implantation model. The recent introduction of the orthotopic lung transplantation model in the mouse fulfilled the criteria for a physiologic lung transplantation setup, and also presents the advantage of being genetically modifiable. Here we review the evolution of OB models and their applications, from their beginning to the rapidly emerging physiologic models of chronic lung allograft rejection.

Citations

11 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Division of Surgical Research
04 Faculty of Medicine > University Hospital Zurich > Clinic for Thoracic Surgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:June 2013
Deposited On:20 Jan 2014 10:30
Last Modified:05 Apr 2016 17:23
Publisher:American Thoracic Society
ISSN:1044-1549
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1165/rcmb.2012-0379TR
PubMed ID:23392572

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations