UZH-Logo

Maintenance Infos

Varying photoperiod in the laboratory rat: profound effect on 24-h sleep pattern but no effect on sleep homeostasis.


Franken, P; Tobler, I; Borbely, A A (1995). Varying photoperiod in the laboratory rat: profound effect on 24-h sleep pattern but no effect on sleep homeostasis. American Journal of Physiology: Renal Physiology, 269(3 Pt 2):R691-R701.

Abstract

To assess the influence of the photoperiod on sleep regulation, laboratory rats were adapted to a long photoperiod (LPP; 16:8-h light-dark cycle, LD 16:8) or a short photoperiod (SPP; LD 8:16). The electroencephalogram (EEG) and cortical temperature (TCRT) were continuously recorded for a baseline day, a 24-h sleep deprivation (SD) period, and a recovery day. Data obtained previously for LD 12:12 served for comparison. Whereas the photoperiod exerted a prominent effect on the 24-h sleep pattern, the 24-h baseline level of sleep and the response to SD were little affected. Recovery from SD was characterized by a marked rise in rapid eye movement sleep, a moderate rise in non-rapid eye movement sleep, and an initial enhancement of EEG slow-wave activity followed by a decrease below baseline. The amplitude and phase of the "unmasked" 24-h component of TCRT did not differ between LPP and SPP. Computer simulations demonstrated that the changes of TCRT and EEG slow-wave activity can be largely accounted for by the sequence of the vigilance states. We conclude that the photoperiod does not affect the basic processes underlying sleep regulation.

To assess the influence of the photoperiod on sleep regulation, laboratory rats were adapted to a long photoperiod (LPP; 16:8-h light-dark cycle, LD 16:8) or a short photoperiod (SPP; LD 8:16). The electroencephalogram (EEG) and cortical temperature (TCRT) were continuously recorded for a baseline day, a 24-h sleep deprivation (SD) period, and a recovery day. Data obtained previously for LD 12:12 served for comparison. Whereas the photoperiod exerted a prominent effect on the 24-h sleep pattern, the 24-h baseline level of sleep and the response to SD were little affected. Recovery from SD was characterized by a marked rise in rapid eye movement sleep, a moderate rise in non-rapid eye movement sleep, and an initial enhancement of EEG slow-wave activity followed by a decrease below baseline. The amplitude and phase of the "unmasked" 24-h component of TCRT did not differ between LPP and SPP. Computer simulations demonstrated that the changes of TCRT and EEG slow-wave activity can be largely accounted for by the sequence of the vigilance states. We conclude that the photoperiod does not affect the basic processes underlying sleep regulation.

Citations

27 citations in Web of Science®
33 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:1 September 1995
Deposited On:11 Feb 2008 12:19
Last Modified:05 Apr 2016 12:16
Publisher:American Physiological Society
ISSN:0002-9513
Related URLs:http://ajpregu.physiology.org/cgi/content/abstract/269/3/R691
PubMed ID:7573572

Download

Full text not available from this repository.

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations