UZH-Logo

Maintenance Infos

The expanding role of PARPs in the establishment and maintenance of heterochromatin


Dantzer, Françoise; Santoro, Raffaella (2013). The expanding role of PARPs in the establishment and maintenance of heterochromatin. FEBS Journal, 280(15):3508-3018.

Abstract

Poly(ADP-ribose) polymerases (PARPs) are enzymes that transfer poly(ADP-ribose) (PAR) groups to target proteins, and thereby affect various nuclear and cytoplasmic processes. The activity of PARP family members, such as PARP1 and PARP2, is tied to cellular signalling pathways, and, through poly(ADP-ribosyl)ation, they ultimately promote changes in chromatin architecture, gene expression, and the location and activity of proteins that mediate signalling responses. A growing body of evidence suggest that PARPs, particularly PARP1 and PARP2, also operate at heterochromatic regions such as the inactive X chromosome, telomeres, pericentric heterochromatin and silent ribosomal RNA (rRNA) genes. Both proteins localize to heterochromatic sites and often associate with or poly(ADP-ribosyl)ate histones and heterochromatin-binding proteins, thereby modulating their activities. In this review, we describe current knowledge concerning the role of PARPs in establishment and inheritance of heterochromatic structures, and highlight how their contribution affects biological outcomes.

Poly(ADP-ribose) polymerases (PARPs) are enzymes that transfer poly(ADP-ribose) (PAR) groups to target proteins, and thereby affect various nuclear and cytoplasmic processes. The activity of PARP family members, such as PARP1 and PARP2, is tied to cellular signalling pathways, and, through poly(ADP-ribosyl)ation, they ultimately promote changes in chromatin architecture, gene expression, and the location and activity of proteins that mediate signalling responses. A growing body of evidence suggest that PARPs, particularly PARP1 and PARP2, also operate at heterochromatic regions such as the inactive X chromosome, telomeres, pericentric heterochromatin and silent ribosomal RNA (rRNA) genes. Both proteins localize to heterochromatic sites and often associate with or poly(ADP-ribosyl)ate histones and heterochromatin-binding proteins, thereby modulating their activities. In this review, we describe current knowledge concerning the role of PARPs in establishment and inheritance of heterochromatic structures, and highlight how their contribution affects biological outcomes.

Citations

18 citations in Web of Science®
22 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 30 Jan 2014
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Biochemistry and Molecular Biology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2013
Deposited On:30 Jan 2014 15:32
Last Modified:05 Apr 2016 17:25
Publisher:Wiley-Blackwell
ISSN:1742-464X
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1111/febs.12368
PubMed ID:23731385
Permanent URL: https://doi.org/10.5167/uzh-89057

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 192kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations