UZH-Logo

Adding data mining support to SPARQL via statistical relational learning methods


Kiefer, C; Bernstein, A; Locher, A (2008). Adding data mining support to SPARQL via statistical relational learning methods. In: 5th European Semantic Web Conference (ESWC), Tenerife, Spain, 1 June 2008 - 5 June 2008, 478-492.

Abstract

Exploiting the complex structure of relational data enables to build better models by taking into account the additional information provided by the links between objects. We extend this idea to the Semantic Web by introducing our novel SPARQL-ML approach to perform data mining for Semantic Web data. Our approach is based on traditional SPARQL and statistical relational learning methods, such as Relational Probability Trees and Relational Bayesian Classifiers.

We analyze our approach thoroughly conducting three sets of experiments on synthetic as well as real-world data sets. Our analytical results show that our approach can be used for any Semantic Web data set to perform instance-based learning and classification. A comparison to kernel methods used in Support Vector Machines shows that our approach is superior in terms of classification accuracy.

Exploiting the complex structure of relational data enables to build better models by taking into account the additional information provided by the links between objects. We extend this idea to the Semantic Web by introducing our novel SPARQL-ML approach to perform data mining for Semantic Web data. Our approach is based on traditional SPARQL and statistical relational learning methods, such as Relational Probability Trees and Relational Bayesian Classifiers.

We analyze our approach thoroughly conducting three sets of experiments on synthetic as well as real-world data sets. Our analytical results show that our approach can be used for any Semantic Web data set to perform instance-based learning and classification. A comparison to kernel methods used in Support Vector Machines shows that our approach is superior in terms of classification accuracy.

Citations

13 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

172 downloads since deposited on 09 Jan 2009
10 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Conference or Workshop Item (Paper), refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
Dewey Decimal Classification:000 Computer science, knowledge & systems
Language:English
Event End Date:5 June 2008
Deposited On:09 Jan 2009 08:30
Last Modified:05 Apr 2016 12:45
Publisher:Springer
Series Name:Lecture Notes in Computer Science (LNCS)
Number:5021
ISBN:978-3-540-68233-2
Additional Information:In this book, the proceedings of the 5th European Semantic Web Conference (ESWC 2008), Tenerife, Canary Islands, Spain, June 1-5, 2008 are published, at which this paper was presented. The original publication is available at www.springerlink.com
Publisher DOI:10.1007/978-3-540-68234-9_36
Official URL:http://www.ifi.uzh.ch/pax/web/index.php/publication/show/id/824
Related URLs:http://www.eswc2008.org
Permanent URL: http://doi.org/10.5167/uzh-8936

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher
[img]
Filetype: PDF (Original publication) - Registered users only
Size: 1MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations