UZH-Logo

Maintenance Infos

Hypovolemia explains the reduced stroke volume at altitude


Siebenmann, Christoph; Hug, Mike; Keiser, Stefanie; Müller, Andrea; van Lieshout, Johannes; Rasmussen, Peter; Lundby, Carsten (2013). Hypovolemia explains the reduced stroke volume at altitude. Physiological Reports, 1(5):e00094.

Abstract

During acute altitude exposure tachycardia increases cardiac output (Q) thus preserving systemic O2 delivery. Within days of acclimatization, however, Q normalizes following an unexplained reduction in stroke volume (SV). To investigate whether the altitude-mediated reduction in plasma volume (PV) and hence central blood volume (CBV) is the underlying mechanism we increased/decreased CBV by means of passive whole body head-down (HDT) and head-up (HUT) tilting in seven lowlanders at sea level (SL) and after 25/26 days of residence at 3454 m. Prior to the experiment on day 26, PV was normalized by infusions of a PV expander. Cardiovascular responses to whole body tilting were monitored by pulse contour analysis. After 25/26 days at 3454 m PV and blood volume decreased by 9 ± 4% and 6 ± 2%, respectively (P < 0.001 for both). SV was reduced compared to SL for each HUT angle (P < 0.0005). However, the expected increase in SV from HUT to HDT persisted and ended in the same plateau as at SL, albeit this was shifted 18 ± 20° toward HDT (P = 0.019). PV expansion restored SV to SL during HUT and to an ∼8% higher level during HDT (P = 0.003). The parallel increase in SV from HUT to HDT at altitude and SL to a similar plateau demonstrates an unchanged dependence of SV on CBV, indicating that the reduced SV during HUT was related to an attenuated CBV for a given tilt angle. Restoration of SV by PV expansion rules out a significant contribution of other mechanisms, supporting that resting SV at altitude becomes reduced due to a hypovolemia.

During acute altitude exposure tachycardia increases cardiac output (Q) thus preserving systemic O2 delivery. Within days of acclimatization, however, Q normalizes following an unexplained reduction in stroke volume (SV). To investigate whether the altitude-mediated reduction in plasma volume (PV) and hence central blood volume (CBV) is the underlying mechanism we increased/decreased CBV by means of passive whole body head-down (HDT) and head-up (HUT) tilting in seven lowlanders at sea level (SL) and after 25/26 days of residence at 3454 m. Prior to the experiment on day 26, PV was normalized by infusions of a PV expander. Cardiovascular responses to whole body tilting were monitored by pulse contour analysis. After 25/26 days at 3454 m PV and blood volume decreased by 9 ± 4% and 6 ± 2%, respectively (P < 0.001 for both). SV was reduced compared to SL for each HUT angle (P < 0.0005). However, the expected increase in SV from HUT to HDT persisted and ended in the same plateau as at SL, albeit this was shifted 18 ± 20° toward HDT (P = 0.019). PV expansion restored SV to SL during HUT and to an ∼8% higher level during HDT (P = 0.003). The parallel increase in SV from HUT to HDT at altitude and SL to a similar plateau demonstrates an unchanged dependence of SV on CBV, indicating that the reduced SV during HUT was related to an attenuated CBV for a given tilt angle. Restoration of SV by PV expansion rules out a significant contribution of other mechanisms, supporting that resting SV at altitude becomes reduced due to a hypovolemia.

Altmetrics

Downloads

36 downloads since deposited on 03 Feb 2014
16 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2013
Deposited On:03 Feb 2014 16:20
Last Modified:05 Apr 2016 17:27
Publisher:Wiley Open Access
ISSN:2051-817X
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1002/phy2.94
PubMed ID:24303166
Permanent URL: https://doi.org/10.5167/uzh-89523

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 563kB
View at publisher
Licence: Creative Commons: Attribution 3.0 Unported (CC BY 3.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations