UZH-Logo

Maintenance Infos

Error detection and error memory in spatial navigation as reflected by electrodermal activity


Holper, Lisa; Jäger, Natalie; Scholkmann, Felix; Wolf, Martin (2013). Error detection and error memory in spatial navigation as reflected by electrodermal activity. Cognitive Processing, 14(4):377-389.

Abstract

The study investigated spatial navigation by means of electrodermal activity (EDA). Two groups of healthy subjects (group 1, age <38; group 2, age ≥ 38) were recorded during navigation through two 3-D virtual mazes differing in difficulty, that is, Maze Simple (MazeS) and Maze Complex (MazeC). Our results show (1) an effect of difficulty, that is, larger skin conductance responses (SCRs) and slower velocity profiles while navigating through MazeC as compared to MazeS. (2) An effect of age, that is, larger SCRs and faster velocity profiles in younger subjects (group 1) compared to older subjects (group 2). (3) An effect of maze region, that is, SCRs increased when subjects entered dead ends with group 1 (young group) decreasing in velocity, whereas group 2 (old group) increased in velocity. (4) And an error memory effect, that is, subjects who remembered an error at a given decision point (crossroads preceding dead ends in MazeC) from previous trials, and then if they did not repeat that error, elicited decreased SCRs as compared to subjects who did not remember and subsequently repeated an error. The latter aspect is the most impactful as it shows that EDA is able to reflect error detection and memory during spatial navigation. Our data designate EDA as suitable monitoring tool for identification and differentiation of the affective correlates underlying spatial navigation, which has recently attracted researchers' attention due to its increased use in 3-D virtual environments.

Abstract

The study investigated spatial navigation by means of electrodermal activity (EDA). Two groups of healthy subjects (group 1, age <38; group 2, age ≥ 38) were recorded during navigation through two 3-D virtual mazes differing in difficulty, that is, Maze Simple (MazeS) and Maze Complex (MazeC). Our results show (1) an effect of difficulty, that is, larger skin conductance responses (SCRs) and slower velocity profiles while navigating through MazeC as compared to MazeS. (2) An effect of age, that is, larger SCRs and faster velocity profiles in younger subjects (group 1) compared to older subjects (group 2). (3) An effect of maze region, that is, SCRs increased when subjects entered dead ends with group 1 (young group) decreasing in velocity, whereas group 2 (old group) increased in velocity. (4) And an error memory effect, that is, subjects who remembered an error at a given decision point (crossroads preceding dead ends in MazeC) from previous trials, and then if they did not repeat that error, elicited decreased SCRs as compared to subjects who did not remember and subsequently repeated an error. The latter aspect is the most impactful as it shows that EDA is able to reflect error detection and memory during spatial navigation. Our data designate EDA as suitable monitoring tool for identification and differentiation of the affective correlates underlying spatial navigation, which has recently attracted researchers' attention due to its increased use in 3-D virtual environments.

Altmetrics

Downloads

2 downloads since deposited on 04 Feb 2014
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neonatology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2013
Deposited On:04 Feb 2014 08:17
Last Modified:05 Apr 2016 17:28
Publisher:Springer
ISSN:1612-4782
Publisher DOI:https://doi.org/10.1007/s10339-013-0567-z
PubMed ID:23700191

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 764kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations